
Title

Contents

Index

Chapter1 Introduction

Chapter2 Data Set Basics

Chapter3 Variables and Expressions

Chapter4 Grids and Regions

Chapter5 Animations and GIF images

Chapter6 Customizing Plots

Chapter7 Handing String Data Symbols

Chapter8 Working with Special Data Sets

Chapter9 Computing Environment

Chapter10 Converting to NetCDF

Chapter11 Writing External Functions

Commands Reference

Glossary

Appendix A External Functions

Appendix B PPLUS Guide

Appendix C Ferret-Specific PPLUS Enhancements

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/ferret_icon_large.htm

FERRET

USER'S GUIDE

Version 5.8

NOAA/PMEL/TMAP

Steve Hankin
Jon Callahan, Ansley Manke

Kevin O'Brien
Yonghua Wei

December 20, 2004

About the Cover
The cover of this User's Guide was produced by Ferret. From the top down the plots are: "TOGA-TAO SST," time series
from the Tropical Pacific TAO array; "Levitus Climatological SST," an equal area projection of level one of the annual
Climatological Atlas of the World Oceans by Sydney Levitus of NOAA/NODC; "Perturbation Solution," a visualization
of abstract functions by Dr. Ping Chang; "Vents Megaplume Thermal Structure," vertical temperature profiles of undersea
thermal vents from the NOAA Vents program.

Contents

Title Page

Chapter 1: INTRODUCTION

1. OVERVIEW
1. Ferret User's Group
2. Ferret Home Page

2. GETTING STARTED
1. Concepts

1. Thinking like a Ferret:
2. Unix command line switches
3. Sample sessions

1. Accessing a NetCDF data set
2. Reading an ASCII data file
3. Using viewports
4. Using abstract variables
5. Using transformations
6. Using algebraic expressions
7. Finding the 20-degree isotherm

3. COMMON COMMANDS
4. COMMAND SYNTAX
5. GO FILES

1. Demonstration files
2. GO tools
3. Writing GO tools

1. Documenting GO tools
2. Preserving the Ferret state in GO tools
3. Silent GO tools
4. Arguments to GO tools
5. Documentation and checking arguments to GO tools
6. Flow Control in GO tools
7. Debugging GO tools

6. SAMPLE DATA SETS
7. UNIX TOOLS
8. HELP

1. Examples and demonstrations
2. Help from within Ferret

3. Web-based information

Chapter 2: DATA SET BASICS

1. OVERVIEW
2. NETCDF DATA

1. NetCDF data and strides
2. NetCDF Data with the bounds attribute
3. Multi-file NetCDF data sets
4. Non-standard NetCDF data sets
5. NetCDF and non-standard calendars

3. TMAP-FORMATTED DATA
4. BINARY DATA

1. FORTRAN-structured binary files
1. Records of uniform length
2. Records of non-uniform length
3. Fortran binary files, variables on different grids.

2. Stream binary files
1. Simple stream files
2. Mixed stream files
3. Byte-swapped stream files

5. ASCII DATA
1. Reading ASCII files
2. Reading "DELIMITED" data files

6. TRICKS TO READING BINARY AND ASCII FILES
7. ACCESS TO REMOTE DATA SETS WITH DODS

1. What is DODS?
2. Accessing Remote Data Sets
3. Debugging Access to Remote DODS Data Sets
4. Security
5. Sharing Data Sets via DODS
6. DODS caching
7. Proxy servers

Chapter 3: VARIABLES AND EXPRESSIONS

1. VARIABLES
1. Variable syntax

2. File variables
3. Pseudo-variables

1. Grids and axes of pseudo-variables
4. User-defined variables
5. Abstract variables
6. Missing value flags

1. Missing values in input files
2. Missing values in user-defined variables
3. Missingvalues in output NetCDF files
4. Displaying the missing value flag

7. Returning properties of variables
2. EXPRESSIONS

1. Operators
2. Multi-dimensional expressions
3. Functions

1. MAX
2. MIN
3. INT
4. ABS
5. EXP
6. LN
7. LOG
8. SIN
9. COS

10. TAN
11. ASIN
12. ACOS
13. ATAN
14. ATAN2
15. MOD
16. DAYS1900
17. MISSING
18. IGNORE0
19. RANDU
20. RANDN
21. RHO_UN
22. THETA_FO
23. RESHAPE
24. ZAXREPLACE
25. XSEQUENCE, YSEQUENCE, ZSEQUENCE, TSEQUENCE
26. FFTA

27. FFTP
28. SAMPLEI
29. SAMPLEJ
30. SAMPLEK
31. SAMPLEL
32. SAMPLEIJ
33. SAMPLET_DATE
34. SAMPLEXY
35. SAMPLEXY_CLOSEST
36. SAMPLEXY_CURV
37. SCAT2GRIDGAUSS_XY
38. SCAT2GRIDGAUSS_XZ
39. SCAT2GRIDGAUSS_YZ
40. SCAT2GRIDLAPLACE_XY
41. SCAT2GRIDLAPLACE_XZ
42. SCAT2GRIDLAPLACE_YZ
43. SORTI
44. SORTJ
45. SORTK
46. SORTL
47. TAUTO_COR
48. XAUTO_COR

4. Transformations
1. General information about transformations
2. Transformations applied to irregular regions
3. General information about smoothing transformations
4. @DIN—definite integral
5. @IIN—indefinite integral
6. @AVE—average
7. VAR—weighted variance
8. MIN—minimum
9. @MAX—maximum

10. @SHF:n—shift
11. @SBX:n—boxcar smoother
12. @SBN:n—binomial smoother
13. @SHN:n—Hanning smoother
14. @SPZ:n—Parzen smoother
15. @SWL:n—Welch smoother
16. @DDC—centered derivative
17. @DDF—forward derivative
18. @DDB—backward derivative

19. @NGD—number of good points
20. @NBD—number of bad points
21. @SUM—unweighted sum
22. @RSUM—running unweighted sum
23. @FAV:n—averaging filler
24. @FLN:n—linear interpolation filler
25. @FNR—nearest neighbor filler
26. @LOC—location of
27. @WEQ—weighted equal; integration kernel
28. @ITP—interpolate
29. @CDA—closest distance above
30. @CDB—closest distance below
31. @CIA—closest index above
32. @CIB—closest index below

5. IF-THEN logic ("masking")
6. Lists of constants ("constant arrays")

3. EMBEDDED EXPRESSIONS
1. Special calculations using embedded expressions

4. DEFINING NEW VARIABLES
1. Global, local, and default variable definitions

5. DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

Chapter 4: GRIDS AND REGIONS

1. OVERVIEW
2. GRIDS

1. Defining grids
2. Time axes and calendars
3. Dynamic grids and axes

1. Dynamic grids
2. Dynamic axes
3. Dynamic pseudo-variables

4. Regridding
1. Regridding transformations

5. Modulo regridding
1. Modulo regridding statistics

3. REGIONS
1. Latitude
2. Longitude
3. Depth

4. Time
5. Delta
6. @ notation
7. Modulo axes

1. Subspan Modulo Axes
8. Region Conflicts

4. FERRET PROGRAM LIMITS

Chapter 5: ANIMATIONS AND gif IMAGES

1. OVERVIEW
1. Animating on the fly
2. Note on using whirlgif to make a movie

2. CREATING AN HDF MOVIE
3. DISPLAYING AN HDF MOVIE
4. ADVANCED MOVIE-MAKING

1. REPEAT command
1. Initializing the color table
2. Making movies in batch mode

5. CREATING gif IMAGES
6. CREATING MPEG ANIMATIONS

Chapter 6: CUSTOMIZING PLOTS

1. OVERVIEW
2. GRAPHICAL OUTPUT

1. Ferret graphical output controls
2. PPLUS graphical output commands

3. AXES
1. Ferret axis controls
2. PPLUS axis commands
3. Overlaying symbols on a time axis

4. LABELS
1. Adding labels
2. Listing labels
3. Removing movable labels
4. Axis labels and title
5. Ferret label controls

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_196
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_197
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_198
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_199
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_200
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_201
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_202
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_203
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_204
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_205
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_206
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPID_207

6. PPLUS label commands
7. Positioning labels relative to other plot elements
8. Positioning labels using the mouse pointer
9. Labeling details with arrows and text

5. COLOR
1. Text and line colors2

1. Ferret color controls for lines
2. PPLUS text and line color commands

2. Shade and fill colors
1. Ferret shade and fill color controls
2. PPLUS shade color commands

6. FONTS
1. Ferret font and text color
2. PPLUS font and text color commands

7. PLOT LAYOUT
1. Ferret layout controls

1. Viewports
2. Pre-defined viewports
3. Advanced usage of viewports
4. Viewport Symbols

2. PPLUS layout commands
3. Controlling the white space around plots

8. CONTOURING
1. Ferret contour controls

1. /LEVELS qualifier
2. PPLUS contour commands

9. SPECIAL SYMBOLS
10. MAP PROJECTIONS AND CURVILINEAR COORDINATES

1. Three-argument (curvilinear) version of SHADE, FILL, CONTOUR, and VECTOR
2. Gridded data sets on curvilinear coordinates
3. Layered (sigma) coordinates
4. Map Projections

1. Using Map Projection scripts
2. Overlays with Map Projections
3. Map Projection scripts

Chapter 7: HANDLING STRING DATA: STRING VARIABLES AND "SYMBOLS"

1. STRING VARIABLES
1. String arrays

2. STRING FUNCTIONS
1. STRCMP(string1, string2)
2. STRLEN(string1)
3. UPCASE(string1)
4. DNCASE(string1)
5. STRINDEX(string1, substring)
6. STRRINDEX(string1, substring)
7. SUBSTRING(string1, offset, len)
8. STRCAT(string1, str2)
9. STRFLOAT(string1)

10. SPAWN command
11. Algebraic operations with string variables.

1. Logical operators with strings
2. Shift transformation of string arrays
3. Strings in IF-THEN-ELSE
4. String concatenation with "+":
5. Strings as Function arguments
6. Regridding string arrays

12. NetCDF input and output of string data
3. SYMBOL COMMANDS
4. AUTOMATICALLY GENERATED SYMBOLS
5. USE WITH EMBEDDED EXPRESSIONS
6. ORDER OF STRING SUBSTITUTIONS
7. CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS
8. USING SYMBOLS IN COMMAND FILES
9. PLOT+ STRING EDITING TOOLS

10. SYMBOL EDITING
11. SPECIAL SYMBOLS

Chapter 8: WORKING WITH SPECIAL DATA SETS

1. WHAT IS NON-GRIDDED DATA?
2. POINT DATA

1. Getting point data into Ferret
2. How point data is structured in Ferret

1. Working with dates
3. Subsampling gridded fields onto point locations and times
4. Defining gridded variables from point data
5. Visualization techniques for point data

3. VERTICAL PROFILES

1. How collections of profiles are structured in Ferret
2. Getting profile data into Ferret
3. Defining vertical sections from profiles
4. Visualization and analysis techniques for profile sections
5. Subsampling gridded fields onto profile coordinates

4. COLLECTIONS OF TIME SERIES
5. COLLECTIONS OF 2-DIMENSIONAL GRIDS
6. LAGRANGIAN DATA

1. Visualization techniques for Lagrangian data
7. SIGMA COORDINATE DATA

1. Visualization techniques for sigma coordinate data
2. Analysis techniques for sigma coordinate data

8. CURVILINEAR COORDINATE DATA
1. Visualization techniques for curvilinear coordinate data
2. Analysis techniques for curvilinear coordinate data

9. POLYGONAL DATA
1. Visualization techniques for polygonal data
2. Analysis techniques for polygonal data

Chapter 9: COMPUTING ENVIRONMENT

1. SETTING UP TO RUN FERRET
2. FILES AND ENVIRONMENT VARIABLES USED BY FERRET
3. MEMORY USE
4. HARD COPY AND METAFILE TRANSLATION

1. 1Hard copy: postscript output
2. Metafile translation
3. Hard Copy: gif files

5. OUTPUT FILE NAMING
6. INPUT FILE NAMING

1. Relative version numbers

Chapter 10: CONVERTING TO NetCDF

1. OVERVIEW
2. SIMPLE CONVERSIONS USING FERRET
3. WRITING A CONVERSION PROGRAM

1. Creating a CDL file with Ferret

2. The CDL file
1. Dimensions
2. Variables
3. Data

3. Standardized NetCDF attributes
4. Directing data to a CDF file
5. Advanced NetCDF procedures

1. Staggered grid
2. Hyperslabs
3. Unevenly spaced coordinates
4. Evenly spaced coordinates (long axes)
5. "Modulo" axes
6. Reversed-coordinate axes
7. Converting time word data to numerical data

6. Example CDL file
4. CREATING A MULTI-FILE NETCDF DATA SET

1. Tools for making descriptor files
2. Example descriptor file

Chapter 11: WRITING EXTERNAL FUNCTIONS

1. OVERVIEW
2. GETTING STARTED

1. Getting example/development code
3. QUICK START EXAMPLE

1. The times2bad20 function
4. ANATOMY OF AN EXTERNAL FUNCTION

1. The ~_init subroutine (required)
2. The ~_compute subroutine (required)
3. The ~_work_size subroutine (required when work arrays are defined)
4. The ~_result_limits subroutine (required if result has a custom or abstract axis)
5. The ~_custom_axes subroutine (required if result has a custom axis)

5. NOTES AND SUGGESTIONS
1. Inheriting axes
2. Loop indices
3. Reduced axes
4. String Arguments

6. UTILITY FUNCTIONS
1. EF_Util.cmn
2. Available utility functions

1. ef_set_desc(id, desc)
2. ef_set_num_args(id, num)
3. ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc)
4. ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn)
5. ef_set_arg_name(id, arg, name)
6. ef_set_arg_desc(id, arg, desc)
7. ef_set_arg_unit(id, arg, unit)
8. ef_set_arg_type(id, arg, type)
9. ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt)

10. ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn)
11. ef_set_axis_reduction(id, Xred, Yred, Zred, Tred)
12. ef_set_axis_limits(id, axis, lo, hi)
13. ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo)
14. ef_set_num_work_arrays(id, nwork)
15. ef_set_work_array_dims(id, iarray, xlo, ylo, zlo, tlo, xhi, yhi, zhi, thi)
16. ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
17. ef_get_arg_info(id, iarg, arg_name, arg_title, arg_units)
18. ef_get_arg_string(id, iarg, text)
19. ef_get_axis_info(id, iarg, axname, ax_units, backward, modulo, regular)
20. ef_get_axis_dates(id, iarg, taxis, numtimes, datebuf)
21. ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
22. ef_get_arg_ss_extremes(id, num_args, ss_min, ss_max)
23. ef_get_bad_flags(id, bad_flag, bad_flag_result)
24. ef_get_coordinates(id, arg, axis, lo, hi, coords)
25. ef_get_box_size(id, arg, axis, lo, hi, size)
26. ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims)
27. ef_get_one_val(id, arg, value)
28. ef_version_test (version)
29. ef_bail_out(id, text)

Part II: COMMANDS REFERENCE

1. ALIAS
2. CANCEL

1. CANCEL ALIAS
2. CANCEL AXIS
3. CANCEL MEMORY
4. CANCEL MOVIE
5. CANCEL SYMBOL
6. CANCEL REGION

7. CANCEL VIEWPORT
8. CANCEL WINDOW

3. CONTOUR
4. DEFINE

1. DEFINE ALIAS
2. DEFINE AXIS
3. DEFINE GRID
4. DEFINE REGION
5. DEFINE SYMBOL
6. DEFINE VARIABLE
7. DEFINE VIEWPORT

5. ELIF
6. ELSE
7. ENDIF
8. EXIT
9. FILE

10. FILL
11. FRAME
12. GO
13. HELP
14. IF

1. IF-THEN-ELSE conditional execution
2. IF-THEN-ELSE logic for masking

15. LABEL
16. LET
17. LIST
18. LOAD
19. MESSAGE
20. PALETTE
21. PATTERN
22. PAUSE
23. PLOT
24. POLYGON
25. PPLUS
26. QUERY
27. QUIT
28. REPEAT
29. SAVE
30. SAY
31. SET

1. SET AXIS

2. SET DATA_SET
3. SET EXPRESSION
4. SET GRID
5. SET LIST
6. SET MEMORY
7. SET MODE

1. SET MODE ASCII_FONT
2. SET MODE CALENDAR
3. SET MODE DEPTH_LABEL
4. SET MODE DESPERATE
5. SET MODE DIAGNOSTIC
6. SET MODE GRATICULE
7. SET MODE IGNORE_ERROR
8. SET MODE INTERPOLATE
9. SET MODE LABELS

10. SET MODE LOGO
11. SET MODE JOURNAL
12. SET MODE LATIT_LABEL
13. SET MODE LONG_LABEL
14. SET MODE METAFILE
15. SET MODE PPLLIST
16. SET MODE REFRESH
17. SET MODE SEGMENTS
18. SET MODE STUPID
19. SET MODE VERIFY
20. SET MODE WAIT

8. SET MOVIE
9. SET REGION

10. SET VARIABLE
11. SET VIEWPORT
12. SET WINDOW

32. SHADE
33. SHOW

1. SHOW ALIAS
2. SHOW AXIS
3. SHOW COMMANDS
4. SHOW DATA_SET
5. SHOW EXPRESSION
6. SHOW FUNCTION
7. SHOW GRID
8. SHOW LIST

9. SHOW MEMORY
10. SHOW MODE
11. SHOW MOVIE
12. SHOW QUERIES
13. SHOW REGION
14. SHOW SYMBOL
15. SHOW TRANSFORM
16. SHOW VARIABLES
17. SHOW VIEWPORT
18. SHOW WINDOWS

34. SPAWN
35. STATISTICS
36. UNALIAS
37. USE
38. USER

1. Objective analysis
2. Scattered sampling

39. VECTOR
40. WHERE
41. WIRE

GLOSSARY
Appendix A: EXTERNAL FUNCTIONS

1. COMPRESSI
2. COMPRESSJ
3. COMPRESSK
4. COMPRESSL
5. COMPRESSI_BY
6. COMPRESSJ_BY
7. COMPRESSK_BY
8. COMPRESSL_BY
9. CONVOLVEI

10. CURV_TO_RECT_MAP
11. CURV_TO_RECT
12. RECT_TO_CURV

13.
14. DATE1900
15. DAYS1900TOYMDHMS
16. EOF_SPACE

17. EOF_STAT
18. EOF_TFUNC
19. FINDHI
20. FINDLO
21. FFT_IM
22. FFT_RE
23. FFT_INVERSE
24. LSL_LOWPASS
25. MINUTES24
26. WRITEV5D
27. XCAT
28. YCAT
29. ZCAT
30. TCAT
31. ZAXREPLACE_AVG
32. ZAXREPLACE_BIN

Appendix B: PPLUS Users Guide

1. INTRODUCTION
2. GETTING STARTED

1. VAX/VMS
2. Required Definitions

1. Optional Definitions
3. COMMAND FORMAT

1. THE COMMANDS
4. COMMAND SYNOPSIS

1. FILES
1. Data Files
2. Other Data Entry
3. PPLUS Output Files
4. PPLUS Command Files

2. AXIS
1. X- And Y-axis
2. Time Axis

3. LABELS
4. COMMAND PROCEDURES
5. COLOR AND FONTS
6. PLOT APPEARANCE
7. PLOT GENERATION

8. DATA MANIPULATION
9. HELP

5. BEGINNERS GUIDE
1. FORMAT
2. 5.2 VARS
3. SKP AND RD
4. PLOT AND CONTOUR
5. EXAMPLES

1. Unformatted Data, X-Y Plot
2. Pre-gridded Data, Contour Plot
3. Ungridded Data, Contour Plot
4. Time Series Plot

6. ROUTING PLOT FILES
1. VAX/VMS

1. Plot Files And Mom
2. Plotting Devices
3. Examples

7. PPLUS COMMAND FILES
1. INTRODUCTION
2. SYMBOL SUBSTITUTION
3. GENERAL GLOBAL SYMBOLS
4. EPIC GLOBAL SYMBOLS
5. COMMAND FILE LOGIC
6. ARITHMETIC
7. SYMBOL ARRAYS
8. SPECIAL FUNCTIONS

1. $EDIT
2. $EXTRACT
3. $INTEGER
4. $LENGTH
5. $LOCATE
6. $ELEMENT

9. LABELS
1. AXIS LABELING
2. EMBEDDED STRING COMMANDS
3. Pen Selection
4. Character Slant
5. Subscripting, Superscripting And Back Spacing

10. DATA FORMATS
1. SEQUENTIAL FORMATS
2. BIBO FORMAT

3. EPIC FORMAT
4. DSF FORMAT

11. ADVANCED COMMANDS
1. %OPNPLT/qualifier
2. %CLSPLT/qualifiers
3. %PLTLIN,n
4. %LABEL/qualifier,x,y,ipos,ang,chsiz,label
5. %RANGE,min,max,ntic
6. %XAXIS/qualifier,xlow,xhigh,xtic,y[,nmstc][,lint][,xunit][,ipos][,csize][,frmt]
7. %YAXIS/qualifier,ylow,yhigh,ytic,x[,nmstc][,lint]

[,yunit][,ipos][,csize][,frmt]
8. PLOT5, PPLUS DIFFERENCES
9. COMMAND DESCRIPTION

1. @file_name/qualifier arg1 arg2 arg3 ...
2. AUTO,ON/OFF
3. AUTOLAB,ON/OFF
4. AXATIC,ATICX,ATICY
5. AXLABP,LABX,LABY
6. AXLEN,XLEN,YLEN
7. AXLINT,LINTX,LINTY
8. AXLSZE,HGTX,HGTY
9. AXNMTC,NMTCX,NMTCY

10. AXNSIG,NSIGX,NSIGY
11. AXSET,TOP,BOT,LEFT,RIGHT
12. AXTYPE,TYPEX,TYPEY
13. BAUD,IB
14. BOX,ON/OFF
15. C
16. CLSPLT
17. CONPRE,prefix
18. CONPST,postfix
19. CONSET,HGT,NSIG,NARC,DASHLN,SPACLN,CAY,NRNG,DSLAB
20. CROSS,ICODE
21. DATPT,type,mark
22. DEBUG on/off
23. DEC symbol
24. DELETE symbol
25. DFLTFNT,font
26. DIR,arg
27. ECHO,on/off
28. ENGLISH

29. ENTER
30. EVAR/qualifier,x-var,y-var
31. GET,file_name
32. GRID[,LINEAR]
33. HELP,arg
34. HLABS,n,height
35. HLP,arg
36. F expression THEN
37. INC sym
38. LABS/qualifier,n,X,Y,JST,label
39. LABSET,HLAB1,HXLAB,HYLAB,HLABS
40. LEV,arg,arg,arg ...
41. LIMITS,value,comparison,flag
42. LINE,n,MARK,TYPE,XOFF,YOFF,DN1,UP1,DN2,UP2
43. LINFIT,n,XIMIN,XIMAX,XOMIN,XOMAX
44. LIST,IMIN,IMAX,JMIN,JMAX,VCOMP,arg
45. LISTSYM
46. LLABS,n,X,Y,TYPE
47. MARKH,n,SIZE
48. METRIC
49. NLINES
50. ORIGIN,XORG,YORG
51. PEN,n,ipen
52. PLOT/qualifiers,label
53. PLOTV/qualifiers,VANG,INC,label
54. PLOTUV/qualifiers,VANG,INC,label
55. PLTNME,fname
56. PLTYPE,ICODE
57. RD/qualifier,NX,NY,TYPE,n,file_name
58. RESET
59. RETURN
60. RLABS,n,ANG
61. ROTATE,ON/OFF
62. RWD,file_name
63. SAVE,file_name
64. SET sym arg
65. SHOW symbol
66. SIZE,width,height
67. SKP,n,file_name
68. SMOOTH,n
69. SPAWN

70. TAXIS/qualifier,DT,arg
71. TEKNME[,fname]
72. TICS,SMX,LGX,SMY,LGY,IX,IY
73. TIME,TMIN,TMAX,TSTART
74. TITLE,HLAB,label
75. TKTYPE,TYPE
76. TRANSXY,n,XFACT,XOFF,YFACT,YOFF
77. TXLABP,n
78. TXLINT,low_int,hi_int
79. TXLSZE,ht
80. TXNMTC,n
81. TXTYPE,type,style
82. VARS,NGRP,A1,A2,A3,...,Ai
83. VECKEY/qualifier,x,y,ipos,format
84. VECSET,length,scale
85. VECTOR/qual,skipx,skipy,label
86. VELVCT,rlenfact,inc
87. VIEW/qualifiers,ZSCALE,IC,ZMIN,ZMAX,VCOMP,label
88. WHILE expression THEN
89. WINDOW,ON/OFF
90. XAXIS,XLO,XHI,XTIC
91. XFOR,frmt
92. XLAB,label
93. YAXIS,YLO,YHI,YTIC
94. YFOR,frmt
95. YLAB,label

10. FONT TABLES

Appendix C: PLOTPLUS PLUS: Ferret Enhancements to PLOTPLUS

1. PLOTPLUS HISTORY, EVOLUTION
2. ENHANCED COMMANDS DESCRIPTION

1. ALINE/qualifier line#, minx, miny, maxx, maxy, set
2. CLSPLT
3. COLOR n, red, green, blue
4. CONSET hgt, nsig, narc, dashln, spacln, cay, nrng, dslab, spline_tension, draftsman
5. FILL/qualifier
6. LINE n, mark, use
7. LIST arg
8. PEN n, ndx

9. PLTNME metafile_name
10. PLTYPE icode META
11. SHADE/qualifier
12. SHAKEY do_key, orient, klab_siz, klab_inc, klab_dig, klab_len, kx_lo, kx_hi, ky_lo,

ky_hi
13. SHASET

3. GKS LINE BUNDLES
4. HARD COPY

Index

! A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

!

*
@
 region specifier

 regridding

 transformations

@ASN
 regridding transformation

@AVE
 transformation @AVE

@CDA transformation
 nearest neighbor above

@CDB transformation
 nearest neighbor below

@CIA transformation
 nearest index below

@CIB transformation
 nearest index below

@DDB transformation
 backward derivative

@DDC transformation
 centered

@DDF transformation
 forward derivative

@DIN transformation
 definite integral

@EVNT
 transformation

@FAV transformation
 averaging filler

@FLN transformation
 linear interpolation

@FNR transformation
 nearest neighbor

@IIN transformation
 indefinite

@ITP
 interpolation

@LOC transformation
 location of

@MAX regridding
@MAX transformation
 maximum value

@MIN transformation
 minimum value

@MOD transformation
 Modulo regridding

@MODMIN regridding statistics
@MODNGD regridding statistics
@MODSUM regridding statistics
@MODVAR regridding statistics
@NBD transformation
 number of bad points

@NGD
 regridding transformation

 transformation

@RSUM transformation
 running unweighted sum

@SBN transformation
 binomial smoother

@SBX transformation
 boxcar smoother

@SHF transformation
 shift data

@SHN transformation
 Hanning smoother

@SPZ transformation
 Parzen

@SUM
 regridding transformation

@SUM transformation
 unweighted

@SWL transformation
 Welch

@VAR transformation
 weighted variance

@WEQ
 weighted equal

360_DAY calendar

A

ABS function
abstract expression
abstract variable
ACOS function
action command
algebraic expression
ALIAS
 defining

 definition

 SHOW ALIAS

aliases for Ferret commands
 ALIAS for DEFINE ALIAS

 FILE for SET DATA/EZ

 FILL for CONTOUR/FILL

 LET for DEFINE VARIABLE

 PAUSE for MESSAGE

 SAVE for LIST/FORMAT=CDF

 SAY for MESSAGE/CONTINUE

 UNALIAS for CANCEL ALIAS

 USE for SET DATA/FORMAT=CDF

ALINE
 pplus command

ambiguous coordinates message
analysis techniques
 curvilear coordinate data

 polygonal coordinates

 sigma coordinate data

animations
 FRAME

 general discussion

 on the fly

 viewing

 whirlgif

append
 time steps to NetCDF file

 time to NetCDF, example

 to Vis5D file

arguments
 quoted

 script

arrow
 text labels

ASCII data
 accessing

 output

 reading "delimited"

 reading, examples

 SET DATA/EZ

ASIN function
ASN
 regridding transformation

aspect ratio
 SET WINDOW/ASPECT

association
 @ASN regridding

ATAN function
ATAN2 function
attributes
 NetCDF attributes

 NetCDF global attributes

autocorrelation
 TAUTO_COR function

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_690
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_691
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_694
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_700
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_695

 XAUTO_COR function

AVE
 regridding transformation

average
 @AVE regridding

 monthly climatology

 over complex regions in space

 transformation @AVE

averaging filler
 @FAV transformation

axis
 /DEFINE

 /NOAXIS

 box size

 CANCEL

 CANCEL depth setting

 CANCEL modulo setting

 customizing

 DEFINE

 definition of

 dynamic

 dynamic, definition

 inheriting

 irregular

 label

 limits

 modulo

 monthly, defining

 multiple axis plots

 NetCDF axis definitions

 permuting

 plot formats

 PLOT/AXES

 PPLUS commands

 redefining

 regular

 removing from plot

 RETURN=XAXIS etc.

 reversed

 reversing

 SET modulo

 transformation

 units

 values, using

B

background color
 indices for

 options

backslash syntax
 escaping special characters

backward derivative
 @DDB transformation

bad/missing data
 setting message

bar charts
batch mode
 gif output

 movie making

 postscript output

 -script

 -server

big-endian
binary data
 byte-swapped

 output

 reading

 record structure

 SET DATA/EZ

binomial smoother
 @SBN transformation

bold
borders, land

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_706

 land.jnl

 land_detailed.jnl

bounds
 NetCDF irregular axes

 on SAVE command

bounds, axis
 NetCDF attribute

box script
 box.jnl, draw a box

box, grid cells
 pseudo variables for axes

 relation to grid, region

boxcar smoother
 @SBX transformation

bullseye
 find local min or max

BYTEORDER
byte-swapped files

C

calendar
 360 day

 axis, discussion

 converting time for NetCDF

 default

 DEFINE AXIS/CALENDAR

 defining calendar axis

 Gregorian

 MODE CALENDAR

 NetCDF attribute

 NetCDF conventions

 noleap

 regridding between

 SET AXIS/CALENDAR

 specifying time at T0

 specifying time values

 standard

 time axes

CANCEL
 /ALL

CANCEL ALIAS
CANCEL AXIS
 /ALL

 /DEPTH

CANCEL DATA
 /ALL

CANCEL DATA_SET
CANCEL EXPRESSION
CANCEL LIST
 /ALL

 /APPEND

 /FILE

 /FORMAT

 /HEAD

 /PRECISION

CANCEL MEMORY
 /ALL

 /PERMANENT

 /TEMPORARY

CANCEL MODE
CANCEL MOVIE
 /ALL

CANCEL REGION
 /ALL

 /I/J/K/L

 /X/Y/Z/T

CANCEL SYMBOL
CANCEL VARIABLE
 /ALL

 /DATASET

CANCEL WINDOW
 /ALL

case sensitivity
 NetCDF variables

 writing to NetCDF

CDA transformation
 nearest neighbor above

CDB transformation
 nearest neighbor below

CDL file
 advanced usage

 definition of

 for Ferret conversion

 sample

 using

child_axis
 NetCDF

CIA transformation
 nearest index below

climatology
 climatological axes

 creating

CLSPLT
 pplus command

CMYK
 color postscript

COARDS
 definition

 NetCDF standard

 non-COARDS files

collections
 time series

 vertical profiles

color
 background, plot

 contouring

 custom control, lines

 custom control, shading

 Ferret control, lines

 Ferret controls, shading

 GO tools

 hard copy

 in HDF movie

 lines

 lines, PLOT/LINE

 of text labels

 palette

 patterns

 PPLUS COLOR command

 PPLUS line color

 PPLUS PEN

 PPLUS shading

 PPLUS SHASET

color key
 controlling attributes

color key (colorbar)
 CONTOUR/KEY

 FILL/KEY

 POLYGON/KEY

 WHERE to position

color_thickness
 for contour lines

 for lines

columns
 LIST/WIDTH=columns

 SET DATA/COLUMNS examples

 SET DATA/EZ/COLUMNS=

 SET DATA/STREAM/COLUMNS=

COLUMNS
 alias for SET DATA/FORM=DELIMITED

command
 abbreviated syntax

 Commands Reference

 continuation

 executing a Unix command

 SHOW

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_704

 syntax

command line
 starting Ferret

 Unix command

COMMON_YEAR calendar
COMPRESSI
COMPRESSI_BY
compressing data
COMPRESSJ
COMPRESSJ_BY
COMPRESSK
COMPRESSK_BY
COMPRESSL
COMPRESSL_BY
concatenation
 of data, in T

 of data, in X

 of data, in Y

 of data, in Z

 of strings

confidence interval, plotting
 see error_bars_demo script

conformability
CONSET
 pplus command

constant arrays
context
 definition

 setting the

continuation lines
CONTOUR
 /AXES

 /COLOR

 /D
 /FILL

 /FRAME

 /HGRATICULE

 /HLIMITS

 /I /J /K /L

 /KEY

 /LEVELS

 /LEVELS, examples

 /LINE

 /NOAXIS

 /NOKEY

 /NOLABELS

 /OVERLAY

 /PATTERN

 /PEN

 /SIGDIG

 /SIZE

 /SPACING

 /TRANSPOSE

 /VGRATICULE

 /VLIMITS

 /X/Y/Z/T

 curvilinear version

 customizing CONTOUR plots

 dash controls

 demo script

 examples

 extrema, annotating

 label controls

 NOAXIS

 options

 pplus controls

 spline_tension

contouring
controlling color key
converting units
convolution functions
coordinates
 curvilinear coordinate data

 in NetCDF file

 interpolation

 pseudo-variables

 RETURN= start,end coord

 SHOW GRID /W/Y/Z/T

 spacing, NetCDF

 underlying grid

correlation
 in variance script

COS function
creating
cross section
 along an x-y track

 x-y track, SAMPLEXY_CLOSEST

curl
curly brackets
CURV_TO_RECT function
CURV_TO_RECT_MAP function
curvilinear coordinates
 curvilinear coordinate data

 gridded data

 plot commands

 regridding to curvilinear

 regridding to rectilinear

 sampling data from

 scripts for

D

daily data
dashed lines
data
 ASCII

 CANCEL DATA_SET

 data set

 editing

 multi NetCDF

 NetCDF

 SET DATA_SET

 SHOW SET

 STATISTICS

 TMAP-formatted

data set
 definition

 examples

 EZ

 general discussion

 label

 locating

 MC: multi CDF

 multi CDF, creating

 NetCDF

 RETURN=dset,...

 RETURN=dsetpath

 save and restore

DATE1900 function
dates
 axis labels

 datestring script

 for modulo time axis

 format for

 in ASCII files

 in external functions

 in NetCDF file

 in REPEAT loops

 MODE CALENDAR

 SAMPLET_DATE function

 SESSION_DATE

DAYS1900 function
DAYS1900TOYMDHMS function
DDC transformation
 centered

DDF transformation
 forward derivative

debugging
 complex expressions

 go tools

 SET MODE DIAGNOSTIC

 SET MODE IGNORE_ERROR

DEFINE
DEFINE ALIAS
DEFINE AXIS
 /DEPTH

 /EDGES

 /FILE

 /FROM_DATA

 /MODULO

 /NAME

 /NPOINTS

 /T0

 /UNITS

 redefining an axis

DEFINE GRID
 /FILE

 /LIKE

 /X/Y/Z/T

DEFINE REGION
 /DEFAULT

 /DI/DJ/DK/DL

 /DX/DY/DZ/DT

 /I/J/K/L

 /X/Y/Z/T

DEFINE SYMBOL
DEFINE VARIABLE
 /BAD=

 /DATASET

 /QUIET

 /UNITS

 User-defined variables

DEFINE VIEWPORT

 /AXES

 /TEXT

 /XLIMITS

 /YLIMITS

 special symbols

definite integral
 @DIN transformation

delimited data files
 reading

 SET DATA/FORM=DELIMITED

delta function
delta notation
demo scripts
density
 RHO_UN function

 ZAXREPLACE function

depth
 DEFINE AXIS/DEPTH

 go scripts

 SET MODE DEPTH_LABEL

 specifying ranges

derivative
 backward @DBF

 centered @DDC

 forward @DDF

 transformations

descriptor file
 definition

 example

 formatting notes

 locating

 syntax

 TMAP-formatted data

 tools for creating

DIAGNOSTIC mode
digitize
digits

dimensions
 multi-dimensional expression

 NetCDF

direct access
 Fortran files

divergence
DNCASE function
DODS
 .dodsrc file

 accessing remote data

 caching

 initialization file

 locating data

 password access

 proxy servers

 security

 sharing data

drifter data
dynamic axis
dynamic grid
 definition

 SHOW GRID/DYNAMIC

dynamic height

E

ECHO
edges
 DEFINE AXIS/EDGES

ELIF
ELSE
 conditional execution

 masking

embed point data in axis
embedded expressions
 immediate mode

 with symbols

empirical orthogonal functions
 eigenfunctions

 EOF_SPACE

 EOF_STAT

 EOF_TFUNC

 time amplitude fcns

endian
ENDIF
environment
 computing

 environment variables
 list of

 listing with Fenv

environment variable
EOF functions
 eof_space

 eof_stat

 eof_tfunc

error bars
 error_bar_demo script

errors
 generating messages

 insufficient memory

 MODE IGNORE_ERROR

 syntax for generating

event mask
EVNT
 transformation

exclamation mark syntax
EXIT
 /COMMAND_FILE

 /LOOP

 /PROGRAM

 /PROMPT

 /SCRIPT

 QUIT

EXP function

export graphics
 gif files

 gif, batch mode

 postscript files

 postscript, batch mode

expression
 algebraic

 CANCEL

 definition

 SET default context

 SHOW

external function
 axis inheritance

 compute subroutine

 custom axes

 ef utility functions

 ef_bail_out

 ef_get_arg_info

 ef_get_arg_ss_extremes

 ef_get_arg_string

 ef_get_arg_subscripts

 ef_get_axis_dates

 ef_get_axis_info

 ef_get_bad_flags

 ef_get_box_limits

 ef_get_box_size

 ef_get_coordinates

 ef_get_desc

 ef_get_one_val

 ef_get_res_subscripts

 ef_set_arg_desc

 ef_set_arg_name

 ef_set_arg_type

 ef_set_arg_unit

 ef_set_axis_extend

 ef_set_axis_influence

 ef_set_axis_inheritance

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_710

 ef_set_axis_limits

 ef_set_axis_reduction

 ef_set_custom_axis

 ef_set_num_args

 ef_set_num_work_arrays

 ef_set_piecemeal_ok

 ef_set_work_array_dims

 EF_Util.cmn

 ef_version_test

 example function

 getting EF example code

 getting started

 inheriting axes

 init subroutine

 list of included functions

 loop indices

 reduced axes

 result_limits

 string arguments

 structure of EF

 utility functions

 working storage

extrema
 FINDHI function

 FINDLO function

 transformations

EZ data
 definition

 FILE command

 missing data markers

 reading ASCII files

 SET DATA/EZ

F

Faddpath
Fapropos

FAV transformation
 averaging filler

Fdata
Fdescr
Fenv
FER_DATA
FER_DESCR
FER_DIR
FER_DSETS
FER_GO
FER_GRIDS
FER_PALETTE
Ferret Home Page
ferret_paths
FFT
 FFT amplitude

 FFT phase

 FFT_IM(imaginary)

 FFT_INVERSE

 FFT_RE(real)

Fgo
Fgrids
FILE
 alias for SET DATA/EZ

files
 ASCII

 ASCII "delimited"

 binary

 byte-swapped

 delimited

 DODS

 LIST

 mixed types

 NetCDF formatted

 reading, demo

 real*8

 SET DATA

 stream

 supported stream types

 TMAP-formatted

FILL
 CONTOUR/FILL

 curvilinear version

fill value
 file creation

 on output to NetCDF

fill values
 and missing values

filler (missing value)
 @FAV averaging filler

 @FLN linear interpolation

 @FNR nearest neighbor filler

FILLPOL
filtering
 transformations

 with CONVOLVE functions

FINDHI function
FINDLO function
flag (missing value)
FLN transformation
 linear interpolation filler

flow control (scripts)
 ELIF

 IF
 IF-THEN-ELSE

 SET MODE IGNORE_ERROR

flowline
 VECTOR/FLOW

FNR transformation
 nearest neighbor filler

font
 Ferret controls

 PPLUS commands

 PPLUS fonts

 pplus symbol fonts

format
 data sets

 Ferret

 HDF

 LIST/FORMAT=

 MODE ASCII_FONT

 MODE LATIT_LABEL

 MODE LONG_LABEL

 NetCDF

 numeric axis labels

 SET DATA/FORMAT

 SET LIST/FORMAT

 standardized data

 TMAP

 TMAP format

formatting
 LIST/FORMAT

 LIST/HEADING

 numerical output

 plots

forward derivative
 @DDF transformation

Fourier transforms
 FFT_INVERSE function

 FFTA function

 FFTP function

Fpalette
Fprint
 Unix command

Fpurge
 Unix file naming

FRAME
 /FILE=filename

 /FORMAT=format

 /FORMAT=gif

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_693

 /FORMAT=HDF

 creating HDF movie

 movies in gif format

 PLOT/FRAME

Fsort
 Unix file naming

function
 grid-changing

 list of functions

G

geographic
 scripts

getting point data into Ferret
gif image
 creating gif images

 FRAME/FORMAT=gif

 -gif command line switch

GKS
 color map

 graphic metafile

 line bundles

 MODE METAFILE

 MODE SEGMENTS

gksm2ps
GLOSSARY
GO
 /HELP

 arguments

 demonstration files

 file, definition

 files

 files, running

 quoted arguments

 tools, included with Ferret

 Unix file naming

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_697
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_705
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_709

 writing GO tools

graphics
 /SET_UP

 hard copy

 memory

 MODE METAFILE

 output controls

 viewport

graticule
 CONTOUR /GRAT

 overlay on plot

 PLOT /GRAT

 SET MODE GRATICULE

 SHADE /GRAT

 VECTOR /GRAT

grave accent
 embedded expressions

 order of precedence

GREGORIAN calendar
Gregorian year
grid
 box size

 conformable

 default

 DEFINE AXIS

 DEFINE GRID

 Defining

 definition

 dynamic

 dynamic, definition

 grid box

 grid file

 of expressions

 of pseudo-variables

 regridding

 RESHAPE function

 RETURN=GRID name

 SET

 staggered

grid-changing functions
gridded data sampled at points
gridding scattered data
 defining grid from data

 objective analysis

 SCAT2GRIDGAUSS_XY function

 SCAT2GRIDGAUSS_XZ function

 SCAT2GRIDGAUSS_YZ function

 SCAT2GRIDLAPLACE_XY function

 SCAT2GRIDLAPLACE_XZ function

 SCAT2GRIDLAPLACE_YZ function

gridfile
 searching

 UD and DU

GT
 locating files

gui
 command line switch

H

Hanning smoother
 @SHN transformation

hard copy
 creating gif images

 Fprint, postscript files

 MODE metafile

HDF
 creating, single image

 movie making

 SET MOVIE

help
 HELP

 Web-based

 within Ferret

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_713
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_692

histograms
HLIMITS
home page
hyperslabs
 NetCDF

I

IF
 conditional execution

 masking

 with strings

IGNORE0 function
images, gif
immediate mode
 BAD=

 embedded expressions

 mathematical expressions

 PRECISION=

 width

indefinite integral
 @IIN transformation

indices
 RETURN= start,end index

inheritance
 of axes

initialization file
insufficient memory
INT function
integral
 definite

 indefinite

 transformations

integration
 @DIN definite integral

 @IIN indefinite integral

 over irregular regions

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_712

interpolation
 @ITP transformation

 MODE INTERPOLATE

 see also "regridding"

isopycnal
 ZAXREPLACE function

isosurface
 @LOC transformation

 example

ITP
 interpolation

J

journal file
 GO files

 log of Ferret commands

 naming

 -nojnl startup

 SET MODE JOURNAL

 writing

JULIAN calendar

K

key
 contour and fill plots

 FILL/KEY

 for PLOT/VS

 positioning with PPL commands

 SHADE/KEY

 use WHERE to position

keywords, reserved

L

LABEL command

 /NOUSER

 moveable labels

 positioning with mouse

labels
 adding

 axis

 contour line

 customizing

 Ferret controls

 fonts

 long labels

 MODE

 MODE CALENDAR

 MODE DEPTH_LABEL

 MODE LABELS

 MODE LATIT_LABEL

 MODE LOGO

 MODE LONG_LABEL

 movable labels

 multi-line demo

 plot

 positioning with mouse

 PPL LIST LABELS

 PPLUS commands

 removing

 with pointing arrow

LABELS
 PPL LIST LABELS

land mass
 filled land fland.jnl

 outline land.jnl

latitude
 COSINE(latitude)

 region

layout
 axes

 controlling white space

 customizing labels

 go tools

 metafile translation

 plot layout controls

least squares
 regression scripts

LET
levels, contour
 general discussion

 saving the settings

 SHADE plots

limits
 Ferret program limits

line
 adding contour lines

 connecting plotted points

 CONTOUR/LINE

 hard copy

 line styles

 line styles, go tools

 overlaying contours

 PLOT/LINE/COLOR/THICK

 POLYGON/LINE

LINE
 pplus command

linear interpolation
 @LIN regridding

linear interpolation filler
 @FLN transformation

LIST
 /APPEND

 /BOUNDS

 /CLOBBER

 /D
 /EDGES

 /FILE

 /FORMAT

 /HEAD

 /HEADING=ENHANCED

 /I /J /K /L

 /ILIMITS /JLIMITS /KLIMITS /LLIMITS

 /NOHEAD

 /ORDER

 /PRECISION

 /QUIET

 /RIGID

 /SINGLY

 /TITLE="title string"

 /WIDTH=

 /X /Y /Z /T

 /XLIMITS /YLIMITS /ZLIMITS /TLIMITS

 LIST ALINE

 LIST SHAKEY

 LIST SHASET

lists of constants
little-endian
LN function
LOAD
 /D
 /I/J/K/L

 /NAME

 /PERMANENT

 /TEMPORARY

 /X/Y/Z/T

LOC transformation
 location of

local extrema
 FINDHI function

 FINDLO function

location transformation
 @LOC

LOG function
log plot
 2-D plots

 demo script

 PLOT/VLOG/HLOG

logarithmic functions
 LN and LOG

Logical operators
 with strings

logo
long_name
 NetCDF variable attributes

longitude
loop
low pass filter
LSL_LOWPASS function

M

make_des
map projections
 curviliear coordinate plots

 demo script

 overlays on

 scripts

 using scripts

maps
 ETOPO data sets

 land script

 overlays using GO tools

masking
 for transformations on irregular regions

 IF-THEN-ELSE logic

mathematical expressions, immediate mode
 BAD=

 PRECISION=

 RETURN=

matrix notation
maximum
 @MAX regridding

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_702

 @MAX transformation

 FINDHI function

 local mamima

 MAX function

MC data sets
 creating

 definition

 tools for creating

memory
 cache, default size

 CANCEL MEMORY

 insufficient memory

 large calculations

 loading expressions into

 management

 -memsize switch

 NetCDF

 SET MEMORY

 SET MODE DESPERATE

 SET MODE SEGMENTS

 SHOW MEMORY

MESSAGE
 /CONTINUE

 /ERROR

 /JOURNAL

 /QUIET

 alias PAUSE

metafile
 hard copy

 MODE METAFILE

 naming, automatic

 on Windows systems

 specifying a name

 translation

minimum
 @MIN regridding

 @MIN transformation

 bullseye.jnl script

 FINDLO function

 local minima

 MIN function

MINUTES24 function
MISSING function
missing value flag
 get flag

 setting message

 setting values

MOD function
MODE
 MODE ASCII_FONT

 MODE CALENDAR

 MODE DEPTH_LABEL

 MODE DESPERATE

 MODE DIAGNOSTIC

 MODE IGNORE_ERROR

 MODE JOURNAL

 MODE LABELS

 MODE LATIT_LABEL

 MODE LONG_LABEL

 MODE METAFILE

 MODE PPLLIST

 MODE REFRESH

 MODE SEGMENTS

 MODE STUPID

 MODE VERIFY

 MODE WAIT

 SET MODE

 SHOW MODE

mode: Ferret state
MODMAX
MODMIN
MODNGD
MODSUM

modulo
 @mod transformation

 attribute, NetCDF

 axis

 axis, DEFINE

 axis, definition

 MOD function

 NetCDF

 regridding

 regridding, definition

 subspan length

 subspan modulo axis

modulo regridding statistics
 MODMAX

 MODMIN

 MODNGD

 MODSUM

 MODVAR

MODVAR
month
monthly axis
 climatological

 creating

mouse
 WHERE command to define position

movies
 animations

 creating from gifs

 FRAME

 HDF, creating

 set movie

 viewing

 whirlgif

MPEG
multi-file data sets
 creating

 definition

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_689
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_696
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_698
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_699
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_688
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_714

multiple axis plots

N

naming
 file version numbers

 of external functions

 Unix file names

 variables, DEFINE VARIABLE

 variables, in NetCDF files

 variables, renaming

NaN
 in NetCDF files

national boundaries
 land.jnl

 land_detailed.jnl

NBD transformation
 number of bad point

nc2mc
ncdump
 creating cdl file

 editing .cdf file

 examples

ncgen
 example

 utility

nearest neighbor
 @NRST regridding

nearest neighbor filler
 @FNR transformation

NetCDF
 accessing data with USE

 append a slab

 append time steps

 axis attributes

 axis definition

 bounds attribute

 case sensitive names

 CDL data initialization

 CDL files

 child_axis

 converting to

 coordinates

 data set title

 definition

 dimensions

 disordered coordinates

 global attributes

 grid_definition

 hyperslabs

 LIST/FORMAT=CDF

 locating

 long_name

 missing values in

 missing values, output

 modulo axes

 multi-file data sets

 multi-file, tools

 NaN in

 parent grid

 permuted axes, /ORDER qualifier

 permuted axis ordering

 RETURN=dsettitle

 reverse-ordered coordinates

 SAVE

 slab_max_index

 slab_min_index

 special axis interpretations

 staggered grids

 strides

 string data

 USE

 utilities

 variable attributes

 variables

 variables, invalid names

 writing to

NGD
 regridding transformation

 transformation

NOLEAP calendar
non-gridded data
 collections

 curvilinear

 point data

 polygonal

 sigma coordinate

 time series

 vertical profiles

normal axis
notation
 @ notation

NRST
 regridding transformation

number of bad points
 @NBD transformation

number of good points
 @NGD regridding

 @NGD transformation

O

objective analysis
 demo script

offset
 NetCDF attribute

 RETURN=NC_OFF

 RETURN=USER_OFF

 SET VARIABLE/OFFSET=

on-line help
 Fapropos

OPenDAP
 see entries under DODS

operator
 definition

 list of

order of operations
 string substitution

ORDER qualifier
 for LIST

 for SET DATA/FORMAT=CDF

output
 gif files

 gif, batch mode

 LIST data files

 postscript files

 postscript, batch mode

overlay
 CONTOUR/OVERLAY

 overlay tools (scripts)

 PLOT/OVERLAY

 POLYGON/OVERLAY

 SHADE/OVERLAY

 VECTOR/OVERLAY

 WIRE/OVERLAY

P

palette
 by_level

 by_percent

 by_value

 CONTOUR/PALETTE

 creation

 directory

 files in $FER_PALETTE

 locating files: Fpalette

 PALETTE command

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_707

 POLYGON/PALETTE

 restoring default

 scripts

 SHADE/PALETTE

 testing

parent grid
 NetCDF

Parzen smoother
 @SPZ transformation

pattern
 CONTOUR/PATTERN=

 demo script

 PATTERN command

 POLYGON/PATTERN=

 SHADE/PATTERN=

pause
 MESSAGE

PEN
 PPLUS commands

performance
 initializing NetCDF file

permutation
 of axes on input

PLOT
 /AXES

 /COLOR

 /D
 /DASH

 /FRAME

 /HLIMITS

 /HLOG

 /I/J/K/L

 /LINE

 /NOKEY

 /NOLABELS

 /NOYADJUST

 /OVERLAY

 /SET_UP

 /SIZE=

 /STEP

 /SYMBOL

 /THICKNESS

 /TITLE

 /TRANSPOSE

 /VGRATICULE

 /VLIMITS

 /VLOG

 /VS

 /X/Y/Z/T

 lines, controlling color and thickness

 log plots

 symbols, controlling size and color

plot name
 PLTNME pplus command

plot output
 gif files

 gif, batch mode

 postscript files

 postscript, batch mode

PLOTUV
PLTNME
 pplus command

point data -- how it is structured
POLYGON
 /AXES

 /COLOR

 /COORD_AX

 /D
 /FILL

 /FRAME

 /GRATICULE

 /HGRATICULE

 /HLIMITS

 /HLOG

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_708

 /KEY

 /LEVELS

 /LINE

 /NOKEY

 /NOLABELS

 /OVERLAY

 /SET_UP

 /THICKNESS

 /TITLE

 /TRANSPOSE

 /VGRATICULE

 /VLIMITS

 /VLOG

 log axes

 scripts

polygon vectors
 poly_vec_demo.jnl

portrait
 Fprint option

 go scripts

 metafile translation

postscript
 ferret -batch option

 Fprint command

 gksm2ps command

 MODE METAFILE

 on Windows systems

potential temperature
 THETA_FO function

PPLUS
 /RESET

 axis commands

 command format

 Ferret Enhancements Guide

 for plot customization

 labels

 MODE ASCII_FONT

 special symbols

 string editing tools

 syntax

 time axes

 Users Guide

precision
 in embedded expressions

 of floating-point variables

print
printing
 hard copy

profile collection structure
profile data into Ferret
projection
 curvilinear coordinates

 map projections

 map projections & curvilinear coordinates

 mp_mask

 overlays

 polar stereographic

 sigma coordinates

 x_page, y_page

pseudo-variable
 definition

 in NetCDF files

 list of

Q

qualifiers
 definition

 string substitution

QUERY
 in GO tools

QUIET
QUIT
 alias for EXIT

quotes
 "invalid" variable names

 /VARIABLES="var"

 defining title

 embedded in strings

 for missing arguments

 grave accents

 string arguments

R

RANDN function
random number generator
 RANDU, RANDN functions

reading data files
 ASCII files

 direct access

 FORTRAN-structured

 NetCDF

 unformatted data

reading scattered data
record axis
record structure
 file
RECT_TO_CURV function
redirection
 pipe a script into Ferret

Reduced axes
region
 CANCEL

 DEFINE

 definition

 named

 pre-defined

 save and restore

 SET

 SHOW

 specifying with @

region (irregular)
regressions
regrid
regridding
 @ASN

 @AVE

 @MIN

 @MOD modulo regridding transformation

 @sum

 @XACT

 curvilinear data

 definition

 demo script

 general concepts

 modulo regridding

 RESHAPE function

 statistics

 string arrays

 syntax and examples

relative version
 GO

 numbers

 Unix file naming

REPEAT
 /ANIMATE

 /I/J/K/L

 /LOOP=

 /NAME

 /RANGE

 /X/Y/Z/T

 in making animations

reserved keywords
reserved names
RESHAPE
 function

RETURN

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_703

RETURN=
 AXIS

 BAD flag

 CALENDAR

 coordinates of result

 data set information

 DSETNUM

 embedded expressions

 GRID name

 IEND

 ISIZE

 ISTART

 NC_OFFSET

 NC_SCALE

 SHAPE

 SIZE

 T0

 TITLE of variable

 UNIT of variable

 USER_OFFSET

 XSTART

RGB
 color postscript

RGB mapping
 by level

 by value

 percent

RHO_UN function
rivers
 land_detailed.jnl

RSUM transformation
 running unweighted s

running unweighted sum
 @RSUM transformation

S

SAMPLEI function
SAMPLEIJ function
SAMPLEJ function
SAMPLEK function
SAMPLEL function
SAMPLET_DATE fcn
 defined

 examples

SAMPLEXY function
 function definition

 further examples

SAMPLEXY_CLOSEST
SAMPLEXY_CURV
sampling
 of string arrays

 scattered sampling

 scripts

SAVE
SAY
 alias for MESSAGE/CONTINUE

 examples

SBN transformation
 binomial

SBX transformation
 boxcar

scale
 NetCDF attribute

 RETURN=NC_SCALE

 RETURN=USER_SCALE

 SET VARIABLE/SCALE=

SCAT2GRIDGAUSS_XZ function
SCAT2GRIDGAUSS_YZ function
SCAT2GRIDLAPLACE_XY function
SCAT2GRIDLAPLACE_XZ function
SCAT2GRIDLAPLACE_YZ function
scatter plots
scattered sampling

script
 -script command-line mode

scripts
 GO files

 writing

seasonal averages
section, cross
 along an x-y track

segments
 MODE SEGMENTS

server startup mode
SET
SET AXIS
 /CALENDAR=

 /DEPTH

 /MODULO

 /T0=

 /UNITS=

SET DATA
 /EZ

 /EZ/COLUMNS

 /FORMAT

 /FORMAT=CDF

 /FORMAT=DELIMITED

 /FORMAT=FORTRAN format

 /FORMAT=FREE

 /FORMAT=STREAM

 /GRID

 /ORDER

 /RESTORE

 /SAVE

 /SKIP

 /SWAP

 /TITLE

 /TYPE

 /TYPE for ASCII file

 /VARIABLES

 ASCII data examples

 data set basics

 Fortran binary data

 NetCDF files

 stream files

SET EXPRESSION
SET GRID
 /RESTORE

 /SAVE

 curviliear data

SET LIST
 /APPEND

 /FILE

 /FORMAT

 /HEAD

 /PRECISION

SET MEMORY
SET MODE
 /LAST

 ASCII_FONT

 CALENDAR

 DEPTH_LABEL

 DESPERATE

 DIAGNOSTIC

 GRATICULE

 IGNORE_ERROR

 INTERPOLATE

 JOURNAL

 LABELS

 LATIT_LABEL

 LOGO

 LONG_LABEL

 METAFILE

 REFRESH

 SEGMENTS

 STUPID

 VERIFY

 WAIT

SET MOVIE
 /COMPRESS

 /FILE

 /LASER

 /START

SET REGION
 /DI/DJ/DK/DL

 /DX/DY/DZ/DY

 /I/J/K/L

 /X/Y/Z/T

SET VARIABLE
 /BAD

 /GRID

 /NAME

 /OFFSET

 /TITLE

 /UNITS

SET VIEWPORT
SET WINDOW
 /ASPECT

 /CLEAR

 /LOCATION

 /NEW

 /SIZE

settings
 PPLUS and Ferret settings

setup
 /SET_UP

 setting up to run Ferret

SHADE
 /AXES

 /D
 /FRAME

 /HLIMITS

 /I/J/K/L

 /KEY

 /LEVELS

 /NOAXIS

 /NOKEY

 /NOLABELS

 /OVERLAY

 /PALETTE

 /SET

 /TITLE

 /TRANSPOSE

 /VGRATICULE

 /VLIMITS

 /X/Y/Z/T

 curvilinear version

SHAKEY
 CONTOUR/KEY

 example

 POLYGON/KEY

 pplus command syntax

 SHADE/KEY

shape (of variable)
SHASET
 pplus command

SHF transformation
 of string arrays

 shift data

shift transformation
 @SHF

Shift transformation
 string arrays

SHN transformation
 Hanning smoother

SHOW
 /ALL

SHOW ALIAS
SHOW AXIS
 /ALL

 /I/J/K/L/X/Y/Z/T

SHOW COMMANDS
SHOW DATA
 /BRIEF

 /FILES

 /FULL

 /VARIABLES

 /XML

SHOW EXPRESSION
SHOW FUNCTION
SHOW GRID
 /ALL

 /DYNAMIC

 /I/J/K/L

 /X/Y/Z/T

 /XML

SHOW LIST
 /ALL

SHOW MEMORY
 /ALL

 /FREE

 /PERMANENT

 /TEMPORARY

SHOW MODE
 /ALL

SHOW MOVIE
 /ALL

SHOW QUERIES
SHOW REGION
SHOW SYMBOL
SHOW TRANSFORM
 /ALL

SHOW VARIABLES
 /ALL

 /DATA

 /DIAGNOSTIC

 /USER

SHOW VIEWPORT
 /ALL

SHOW WINDOWS
 /ALL

sigma coordinate data
SIN function
size
 RETURN= # points, variable

slab_max_index
 NetCDF

slab_min_index
 NetCDF

smoothing
 contour lines

 transformations, general

 transformations, smoothing

 with CONVOLVE functions

SORTI function
sorting
 SORTI

 SORTJ

 SORTK

 SORTL

SORTJ function
SORTK function
SORTL function
SPAWN
 string variables

 unix commands

special axis interpretations
 NetCDF

special data
SPZ transformation
 Parzen

square brackets
 for variable context

 in expressions

 in function arguments

square root
staggered grids
 NetCDF

STANDARD calendar
standard deviation
startup file
state (Ferret state)
 in go tools

 SET GRID

 SET MODE

statistical analysis
 demo script

 GO tools for

statistics
 regridding

STATISTICS
 /D
 /I/J/K/L

 /X/Y/Z/T

 BRIEF

stick plot
 PLOTUV command

 stick_vectors script

STRCMP function
stream files
stream format data
streamline
 relation to FLOWLINE

strides
string variables
 arrays of

 changing case

 comparing strings

 concatenating

 converting to float

 from Unix commands

 functions for strings

 length, getting

 logical operators

 NetCDF I/O

 order of precedence

 precedence

 regridding arrays

 sampling functions

 STRCAT function

 STRFLOAT function

 STRINDEX function

 STRLEN function

 STRRINDEX function

 SUBSTRING function

 substring functions

strings
 arguments to go tools

 arguments, containing quotes

 editing, PPLUS functions

 function arguments

 IF-THEN-ELSE

structured files
 FORTRAN structured

subroutines (scripts)
subsampling to points
subsampling to profiles
subscript
subspan modulo
 axes

 comparing datasets

 modulo length

SUBSTRING function
substrings
 STRINDEX function

 STRRINDEX function

SUM

 regridding transformation

 unweighted sum

SWL transformation
 Welch

symbol
 CANCEL

 commands for

 DEFINE

 editing

 PLOT/SYMBOL=

 point-plot symbols, showing

 pplus symbol fonts

 SHOW

symbols, special
 FERRET_VERSION

 PPLUS symbols

 XPIXEL, YPIXEL

syntax
 commands

 examples

 qualifiers

 region

 regridding

 transformation

 variables

T

TAN function
TAUTO_COR function
Taylor diagrams
 script

TBOX
TBOXHI
TBOXLO
TCAT function
Tektronix

 MODE WAIT

text
 color controls

 fonts

 SET MODE ASCII_FONT

 string variables

 style of plot labels

 symbol editing

THETA_FO function
three-dimensional plot
 WIRE

tic marks
 customizing

 default

time
 axis, discussion

 axis: MODE CALENDAR

 axis: NetCDF REGULART

 convert date to days

 convert days to ymdhms

 convert time string to minutes

 converting times for NetCDF files

 converting times to numbers

 non-Gregorian calendar

 output formatting

 overlaying symbols on time plot

 RETURN= T0

 SESSION_TIME

 specifying time at T0

 specifying time region

 time axis PPLUS commands

time series
 locating files

 scripts for

time series analysis
 FFT_IM function

 FFT_RE function

 TAUTO_COR function

title
 CONTOUR/TITLE

 data set, RETURN

 data set, setting

 defining variable title

 NetCDF "title" attribute

 plot

 PLOT/TITLE

 SET DATA/TITLE

 SHADE/TITLE

 VECTOR/TITLE

 WIRE/TITLE

TMAP-formatted file
 definition

tools
 Unix tools

transect
 scripts

 using SAMPLEXY

 using SAMPLEXY_CLOSEST

 using SAMPLEXY_CURV

transformation
 @AVE average

 @CDA closest distance above

 @CDB closest distance below

 @CIA closest index above

 @CIB closest index below

 @DDB backward derivative

 @DDC centered derivative

 @DDF forward derivative

 @DIN definite integral

 @FAV averaging filler

 @FLN linear interpolation filler

 @FNR nearest neighbor filler

 @IIN indefinite integral

 @LOC location of

 @MAX maximum value

 @MIN minimum value

 @NBD number of bad points

 @NGD number of good points

 @RSUM running unweighted sum

 @SBN binomial smoother

 @SBX boxcar smoother

 @SHF shift data

 @SHN Hanning smoother

 @SPZ Parzen smoother

 @SUM unweighted sum

 @SWL Welch smoother

 @VAR weighted variance

 @WEQ weighted equal

 axis

 definition

 examples

 general information

 regridding

 SHOW

trigonometric functions
 SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2

TSEQUENCE function
TYPE
 datatype in ASCII files

U

UNALIAS
unformatted files
units
 axis

 in transformations

 RETURN=UNIT (string)

 SET VARIABLE/UNITS

Unix
 command line

 environment variables

 setting up to run Ferret

 Unix tools

unmapped windows
unweighted sum
 @SUM transformation

 transformation @RSUM

 transformation @SUM

UPCASE function
USE
 SET DATA/FORMAT=CDF

USER
utilities
 NetCDF utilities

 Unix tools

V

variable
 abstract expressions

 abstract, using

 CANCEL

 character

 conformable

 default

 DEFINE

 defining new variables

 file variables

 global

 local

 missing value flag

 missing values in user-defined

 names, DEFINE VARIABLE

 names, in NetCDF file

 NetCDF

 pseudo-

 returning properties of

 SET

 SET DATA_SET

 SHOW

 syntax

 user

variance
 @VAR regridding

 go tool

 transformation @VAR

VECTOR
 /ASPECT

 /AXES

 /COLOR

 /D
 /DENSITY

 /FLOWLINE

 /FRAME

 /HGRATICULE

 /HLIMITS

 /I/J/K/L

 /LENGTH

 /NOAXIS

 /NOKEY

 /NOLABELS

 /OVERLAY

 /PEN

 /SET_UP

 /TITLE

 /TRANSPOSE

 /VGRATICULE

 /VLIMITS

 /X/Y/Z/T

 /XSKIP

 /YSKIP

 as filled polygons

 curvilinear version

 key, positioning

vector plots
 as filled polygons

 demo script

 plot_vectors.jnl

 poly_vec_demo.jnl

 scattered

 scripts

 stick vectors

versions
 GO

 purging

 relative version numbers

 Unix file naming

vertical cross section
 along an x-y track

 using SAMPLEXY_CLOSEST

vertical profile
 example of reading file

vertical sections
 defining from profiles

 script

viewport
 advanced usage

 CANCEL

 DEFINE

 demo script

 pre-defined

 SET

 SHOW

 special symbols

Vis5D files
 WRITEV5D function

visualizing curvilinear coordinate data
visualizing Lagrangian data
visualizing point data
visualizing polygonal coordinate data
visualizing profile data

visualizing sigma coordinate data
VLIMITS

W

wait
 MESSAGE

weighted equal
 @WEQ transformation

weighted variance
 @VAR

Welch smoother
 @SWL transformation

WEQ - weighted equal trans
WHERE
While loop
 see REPEAT

white pen
 for labels

 for plot lines

window
 CANCEL

 SET

 SHOW

 size and shape

 test for open window

windowing
 transformations @MIN @MAX

WIRE
 /D
 /FRAME

 /I/J/K/L

 /NOLABEL

 /OVERLAY

 /SET_UP

 /TITLE

 /TRANSPOSE

 /VIEWPOINT

 /X/Y/Z/T

 /ZLIMITS

 /ZSCALE

 example

wire frame
world coordinate
World Wide Web
WRITEV5D function

X

X Data Slice
X windows
 setting up to run Ferret

 size and shape

 unmapped

XACT regridding
XAUTO_COR function
XBOX
XBOXHI
XML
 SHOW AXIS/XML

 SHOW DATA/XML

 SHOW GRID/XML

XPIXEL
XSEQUENCE function
X-Y plot
 PLOT

Y

YBOXHI
YBOXLO
YCAT function
YPIXEL

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_711
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#_VPINDEXENTRY_701

YSEQUENCE function

Z

ZAXREPLACE function
ZAXREPLACE_AVG function
ZAXREPLACE_BIN function
ZCAT function
ZSEQUENCE function

Chapter 1: INTRODUCTION

Ch1 Sec1. OVERVIEW

Ferret is an interactive computer visualization and analysis environment designed to
meet the needs of oceanographers and meteorologists analyzing large and complex
gridded data sets. "Gridded data sets" in the Ferret environment may be multi-
dimensional model outputs, gridded data products (e.g., climatologies), singly
dimensioned arrays such as time series and profiles, and for certain classes of analysis,
scattered n-tuples (optionally, grid-able using Ferret's objective analysis procedures).
Ferret accepts data from ASCII and binary files, and from two standardized, self-
describing formats. Ferret's gridded variables can be one to four dimensions—usually
(but not necessarily) longitude, latitude, depth, and time. The coordinates along each
axis may be regularly or irregularly spaced

Ferret offers the ability to define new variables interactively as mathematical
expressions involving data set variables and abstract coordinates. Calculations may be
applied over arbitrarily shaped regions. Ferret's "external functions" framework allows
external code written in FORTRAN, C, or C++ to merge seamlessly into Ferret at
runtime. Using external functions, users may easily add specialized model diagnostics,
advanced mathematical capabilities, and custom output formats to Ferret. A collection
of general utility external functions is included with Ferret.

Ferret provides fully documented graphics, data listings, or extractions of data to files
with a single command. Without leaving the Ferret environment, graphical output may
be customized to produce publication-ready graphics. Graphic representations include
line plots, scatter plots, line contours, filled contours, rasters, vector arrows, polygonal
regions and 3D wire frames. Graphics may be presented on a wide variety of map
projections. Interfaces to integrate with 3D and animation applications, such as Vis5D
and XDataSlices are also provided.

Ferret has an optional point-and-click graphical user interface (GUI). The GUI is fully
integrated with Ferret's command line interface. The user may freely mix text-based
commands with mouse actions (push buttons, etc.). Ferret's journal file will log all of
the actions performed during a session such that the entire session, including GUI
inputs, can be replayed and edited at a later time. The GUI version is not currently
supported, and is not available on all operating systems.

This User's Guide describes only the command line interface to Ferret. Other documents
describe the point and click interface.

Ferret was developed by the Thermal Modeling and Analysis Project (TMAP) at
NOAA/PMEL in Seattle to analyze the outputs of its numerical ocean models and
compare them with gridded, observational data. Model data sets are often multi-
gigabyte in size with mixed 3- and 4-dimensional variables defined on staggered grids.

Ferret graphics calls are made using the Plot Plus (PPLUS) graphics package, which is
contained within Ferret. Plot Plus was written by Don Denbo. The Ferret version of
PPLUS has diverged somewhat from the original, and the Ferret developers are
responsible for these changes and for all of Ferret's graphics. Additions to PPLUS, for
Ferret only, are documented in Appendix C of this manual (p. 523), which also has a
brief history of the PPLUS graphics package.

Ferret is supported on a variety of Unix workstations with a version also available for
Windows NT/9x/XP. Ferret is available at no charge from anonymous FTP [node
ftp.ferret.noaa.gov] or from the World Wide Web [URL
http://www.ferret.noaa.gov/Ferret].

Ch1 Sec1.1. Ferret User's Group

The Ferret User's Group provides a venue to ask experienced Ferret users for advice
solving problems and to keep abreast of the latest Ferret updates. To (un)join simply
send an e-mail message to

Majordomo list server address

and include a message which says simply

(un)subscribe ferret_users

(Note this must be in the e-mail message BODY—not in the subject line.) To learn
about the user's list without joining send this message instead to the same address:

info ferret_users

http://www.ferret.noaa.gov/Ferret
mailto:ferret-majordomo@noaa.gov

Ch1 Sec1.2. Ferret Home Page

The Ferret Home Page contains source code distributions, on line documentation, Users'
Group archives, Frequently Asked Questions and more. It is available at

http://ferret.pmel.noaa.gov/Ferret/FAQ/ferret_FAQ.html

Ch1 Sec2. GETTING STARTED

A quick way to get to know Ferret is to run the tutorial provided with the distribution.

% ferret
yes? GO tutorial

If Ferret is not yet installed consult the chapter "Computing Environment" (p. 235).
(The tutorial is also available through the World Wide Web through Ferret's on-line
demonstrations page.) The tutorial demonstrates many of Ferret's features, showing the
user both the commands given and Ferret's textual and graphical output. You may find
the explanations, terms and examples in this manual easier to understand after running
the tutorial.

Ch1 Sec2.1. Concepts

Words in bold below are defined in the glossary of this manual.

In Ferret all variables are regarded as defined on grids. The grids tell Ferret how to
locate the data in space and time (or whatever the underlying units of the grid axes are).
A collection of variables stored together on disk is a data set.

To access a variable Ferret must know its name, data set and the region of its grid that

http://ferret.pmel.noaa.gov/Ferret/FAQ/ferret_FAQ.html
http://ferret.pmel.noaa.gov/Ferret/on_line_demonstrations.html
http://ferret.pmel.noaa.gov/Ferret/on_line_demonstrations.html

is desired. Regions may be specified as subscripts (indices) or in world coordinates.
Data sets, after they have been pointed to with the SET DATA command (alias "USE"),
may be referred to by data set number or name.

Using the LET command new variables may be created "from thin air" as abstract
expressions or created from combinations of known variables as arbitrary expressions.
If component variables in an expression are on different grids, then regridding may be
applied simply by naming the desired grid.

The user need never explicitly tell Ferret to read data. From start to finish the sequence
of operations needed to obtain results from Ferret is simply:

1) specify the data set

2) specify the region

3) define the desired variable or expression (optional)

4) request the output

For example (Figure 1_1),

yes? USE coads !global sea surface data
yes? SET REGION/Z=0/T="16-JAN-1982"/X=160E:160W/Y=20S:20N
yes? VECTOR uwnd,vwnd !wind velocity vector plot

Ch1 Sec2.1.1. Thinking like a Ferret:

(A discussion on the Ferret outlook on the concepts of data, variables, grids and other
basics of Ferret.)

Plottable variables

For this discussion we will coin the term "plottable variables." There are no non-
plottable variables that will come up in this discussion but "variables" is a bit too
generic. Plottable variables are of 3 types:

● file variables – read from disk files
● user-defined variables – defined by the LET command
● pseudo-variables – regions (I,J,K,L,X,Y,...) used as variables

As much as possible Ferret tries to make all types of variables indistinguishable. All
plottable variables are defined on grids. No plottable variables exists in a vacuum for
Ferret. The grid on which a plottable variable exists tells how to locate the variable in
space and time. In cases where the variables are abstract in nature—disconnected from
space and time—Ferret will associate those variables with grids that are abstract, too.
Where a geographical grid will associate the Nth position along an axis with a location
(like 20 degrees north latitude) an abstract grid will simply associate the Nth position
with the number N. Plottable variables may be regridded to other grids than the one on

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch1_fig01.gif

which they are defined. (Done with "G=".)

All references to plottable variables must have a complete context. A complete context
will be described in detail later—briefly it means a region in space, an interval in time
and the data set(s) in which the variables will be found.

Grids

All Ferret grids are 4-dimensional. In most cases the axes have the obvious
interpretation of 3 space coordinates and time but sometimes the axes are abstract.

A grid is composed of 4 axes, each describing the coordinates along one dimension. 3d,
2d, 1d and 0d grids are regarded as special cases of the full 4 dimensions in which 1 or
more axes are set to "NORMAL".

Ferret tries to look at all axes equally—the same syntax of regions and transformations
applies to each. Calendar dates, east-west longitudes and north-south latitudes are
merely convenient ways to format positions along axes that have special interpretations
to people—not to Ferret. (The only exception to this is that if the Y axis has units of
Latitude Ferret will insert cosine(Latitude) factors into some calculations.)

Axes and grids may be defined by "grid files" (which normally have .GRD filename
extensions). Axes may also be defined by the DEFINE AXIS command; grids by the
DEFINE GRID command.

Contexts

A context is a region or point in space and time and a data set(s). This is the
information needed by Ferret to make sense of a reference to a plottable variable.
Suppose that "U" is a variable in a data set (file) called U_DATA. A command like
"PLOT U" is meaningful only when Ferret knows that it is supposed to be looking for U
in data set U_DATA and knows where in 4-dimensional space it is supposed to plot.

The context space-time region may be described by a mix of subscript and world
coordinate positions. Subscripts are specified by I=,J=,K=,L= for axes 1 through 4,
respectively. World coordinates are specified by X=,Y=,Z=,T=. On the right of the
equal sign a single point may be given or a range specified by low:high may be given.
Special formats are allowed for X= (longitude, e.g. 160W), Y=(latitude, e.g. 23.5S) and
time (calendar dates like "7-NOV-1989:12:35:00" in quotation marks).

The data set may be given by name or number. The commands SET DATA and
CANCEL DATA and the D= context descriptor all accept the name of the data set or its
number. The data sets are numbered by the order in which they are pointed to with SET
DATA. This order may be seen with SHOW DATA.

You can tell Ferret the context in 3 places:

1. The program context: Using the commands SET REGION and SET DATA you can
describe a context in which all commands and expressions will be interpreted. You can
look at the program context with SHOW REGION and SHOW DATA. (The command
SET DATA is used both to initialize new data sets and to make previously initialized
sets the current program context. When SET DATA initializes a new data set that set
automatically becomes the data set for the program context.) Example: SET
REGION/Z=50

2. The command context: Using the command qualifiers I,J,K,L,X,Y,Z,T and D
commands like PLOT,CONTOUR,SHADE,LIST and VECTOR can specify additional
context information. Command context information on any axis or on the data set will
replace any program context information on the same axis or the data set.

3. The variable context: Using the same qualifiers as the command context any
plottable variable name can be modified with additional context information in square
brackets (e.g. LET U200 = U[Z=200,D=U_DATA], or LIST U[I=1:100:5]). Variable
context information on any axis or the data set will replace any program or command
context information on the same axis or the data set.

Transformations

Ferret can transform plottable variables along their axes. Transformations may be
specified only in the variable context. Ferret understands a number of transformations
that may be specified with the space-time region qualifiers. Some examples: PLOT
U[Z=0:100@AVE] — the variable U averaged between Z=0 and Z=100 LIST/L=1:200
U[L=@SBX:5] — U with a boxcar smoother of width 5 points along L.

Also,

● @FAV (fill data holes with averages)
● @DIN (definite integral) @IIN (indefinite integral)

● @DDC (centered derivative)
● @SHF (shift data a number of points along an axis)
● @MIN (minimum value along an axis)

... and others (see HELP TRANSFORMATIONS inside Ferret)

Ch1 Sec2.2. Unix command line switches

ferret [-batch <file>.ps][-memsize Mwords] [-unmapped] [-gui] [-
help] [-gif] [-server] [-script [arg1] [arg2]...]

-memsize Mwords
specify the memory (data cache) size in Megawords (default is 6.4)

 If memory is severely limited on a system Ferret's default memory cache size may be
too large to permit execution. In this case use the "-memsize" qualifier on the command
line to specify a smaller cache.

-unmapped
use invisible output windows (useful for creating animations and gif files, or to create
metafiles when window resizing is needed. In this case you can create metafiles, using
any SET WINDOW/SIZE or /ASPECT commands required. Then use gksm2ps to
convert to postscript, using gksm2ps options to control orientation and sizing.)

-gui
start Ferret in point-and-click mode (may not be available on all platforms). This option
is not currently supported. Starting Ferret with ferret -gui will run the current version
of Ferret, but some features may not work. If you need such features, you will need to
use the command-line version of Ferret.

-help
obtain help on the Unix command line options

-nojnl
start Ferret without a journal file. Within the Ferret session, you can use SET MODE

JOURNAL:<filename> to turn on journaling and set the journal file name if desired.

--gif
Ferret can run in batch mode—without an X server (see also -server below). Graphical
output is buffered, and is stored in a gif file by executing the FRAME command. For
example:

> ferret -gif

yes? (commands that generate a plot...)

yes? FRAME/FILE=picture.gif

sends the stored graphical output from Ferret to the gif file picture.gif.

Please note the following when using batch mode:

● Window resizing only works if the window is cleared before resizing the
window. For instance:
 yes? set window/clear/size=0.25
will resize the window while
 yes? set window/size=0.25/clear
will cause an error.

● Avoid metafile commands when running in batch mode. In particular,
 yes? set mode meta
may cause problems.

● Don't create new Ferret windows when running without an X server. The
following command:
 yes? set window/new
will cause Ferret to crash.

-batch
Ferret can generate PostScript files without an X server. If you wish to use this mode,
start Ferret with the -batch option:

ferret -batch <file>.ps

where <file> is the name of the output file. Note that the filename must end with ".ps".

Please note the following when using PostScript mode:

● The PostScript output will not be fully written to the output file until you exit
from Ferret.

● Window sizing commands do not have any effect on PostScript output. (If
window sizing is needed, can start Ferret with the -unmapped option, and create
metafiles, using any SET WINDOW/SIZE or /ASPECT commands required.
 Then use gksm2ps to convert to postscript, using gksm2ps options to control
orientation and sizing if desired.)

● Avoid metafile commands when running in PostScript mode.
● Don't create new Ferret windows when running without an X server. The

following command:
 yes? set window/new
will cause Ferret to crash.

-server
Run in server mode -- don't stop on message commands. This mode uses primitive (but
faster) command line reading, so it is generally preferred when setting up Ferret from a
pipe or batch process. See the notes above under -gif regarding window sizing
commands.

-script
Run a script, with optional arguments, and exit. Ferret starts, the script runs, and Ferret
exits. If Ferret encounters an error, it will issue any error messages and exit to the
command line. The switch also sets the -nojnl, -server, and -noverifyswitches (MODE
VERIFY and MODE JOURNAL may be turned back on within the script). It supresses
the banner lines. So that the command line reader can read and process any arguments
to the script, this option must be specified last, after any other command-line switches
(e.g. -gif or -memsize).

ferret -script file.jnl [arg1] [arg2] [arg3]

Ch1 Sec2.3. Sample sessions

This section presents a number of short Ferret sessions that demonstrate common uses.

Data sets used in these sessions and throughout this manual are included with the
distribution. If Ferret is installed on your system, you can duplicate the examples
shown.

Ch1 Sec2.3.1. Accessing a NetCDF data set

In this sample session, the data set "monthly_navy_winds" is specified and certain
aspects of it are examined. The command SHOW DATA/VARIABLES displays the
variables in "monthly_navy_winds" and where on each axis they are defined. SET
REGION specifies where in the grid the user wishes to examine the data. VECTOR
produces a vector plot of the indicated variables over the specified region.

yes? USE monthly_navy_winds ! specify the data set
yes? SHOW DATA/VARIABLES ! what's in it?
 currently SET data sets:
 1> /opt/local/ferret/fer_dsets/descr/monthly_navy_winds.des
 (default)
 FNOC 2.5 Degree 1 Month Average World-wide Wind Field
name title I J K
 L
UWND ZONAL WIND 1:144 1:73 ...
 1:132
 M/S on grid FNOC251 with -99.9 for missing data
 X=18.8E:18.8E(378.8) Y=91.2S:91.2N
VWND MERIDIONAL WIND 1:144 1:73 ...
 1:132
 M/S on grid FNOC251 with -99.9 for missing data
 X=18.8E:18.8E(378.8) Y=91.2S:91.2N
 time range: 16-JAN-1982 20:00 to 17-DEC-1992 03:30

Ch1 Sec2.3.2. Reading an ASCII data file

Many examples of accessing ASCII data are available later in this manual. See the
chapter, "Data Sets" (p. 33) The simplest access, one variable with one value per record,
looks like this:

% ferret
yes? FILE/VARIABLE=v1 snoopy.dat
yes? PLOT v1
yes? QUIT

Ch1 Sec2.3.3. Using viewports

The command SET VIEWPORT allows the user to divide the output graphics "page"
into smaller display viewports.

In this sample session, we create two plots in two halves of a window (Figure 1_2):

% ferret
yes? USE coads_climatology
yes? SET REGION/X=160E:130W
yes? SET REGION/Y=-10:10/L=5
yes? SET VIEWPORT upper
yes? CONTOUR sst
yes? SET VIEWPORT lower
yes? CONTOUR airt
yes? QUIT

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch1_fig02.gif

Ch1 Sec2.3.4. Using abstract variables

Abstract variables (expressions that contain no dependencies on disk-resident data) can
be easily displayed with Ferret. See the chapter "Variables and Expressions", section
"Abstract variables" (p. 63), for several examples and detailed information.

For example, a user wishing to examine the function SIN(X) on the interval [0,3.14]
might use (Figure 1_3):

% ferret
yes? PLOT/I=1:100 sin(3.14*I/100)
yes? QUIT

Ch1 Sec2.3.5. Using transformations

A transformation is an operation performed on a variable along a particular axis and is
specified with the syntax "@trn" where "trn" is the name of a transformation. See the
chapter "Variables and Expressions", section "Transformations" (p. 96), for detailed

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch1_fig03.gif

information.

A user may wish to look at ocean temperatures averaged over a range of depths. In this
sample session, we look at temperatures averaged from 0 to 100 meters of depth using a
data set which has detailed resolution in depth (Figure 1_4). We plot the data along
longitude 160 west from latitude 30 south to 30 north.

% ferret
yes? USE levitus_climatology
yes? SET REGION/Y=30s:30n/X=160W
yes? PLOT temp[Z=0:100@AVE]
yes? QUIT

Ch1 Sec2.3.6. Using algebraic expressions

See the chapter "Variables and Expressions", section "Expressions" (p. 65) for a
description of valid expressions.

In this example, the data set contains raw sea surface temperatures, air temperatures,
and wind speed measurements. We wish to look at a shaded plot of sensible heat at its
first timestep (L=1) (Figure 1_5). We specify a latitude range and contour levels.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch1_fig04.gif

% ferret
yes? USE coads_climatology !monthly COADS climatology
yes? LET kappa = 1 !arbitrary
yes? LET/TITLE="SENSIBLE HEAT" sens_heat = kappa * (airt-sst) *
wspd
yes? SHADE/L=1/LEV=(-20,20,5)/Y=-90:40 sens_heat
yes? QUIT

Ch1 Sec2.3.7. Finding the 20-degree isotherm

Isotherms can be located with the "@LOC" transform, which returns the axis location
where the value of the argument of @LOC first occurs. Thus,
"TEMP[Z=0:200@LOC:20]" locates the first occurrence of the temperature value 20
along the Z axis, scanning all the data between 0 and 200 meters.

A session examining the 20-degree isotherm in mid-Pacific ocean data (Figure 1_6):

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch1_fig05.gif

% ferret
yes? USE levitus_climatology
yes? SET REG/Y=10s:30n/X=140E:140W
yes? PPL CONSET .12 !label size
yes? CONTOUR temp[Z=0:200@LOC:20]
yes? QUIT

Note that the transformation @WEQ could have been used to display ANY variable on
the surface defined by the 20 degree isotherm.

Ch1 Sec3. COMMON COMMANDS

A quick reference to the most commonly used Ferret commands (typing "SHOW
COMMANDS" at the Ferret prompt lists all commands):

Command Description

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch1_fig06.gif

USE names the data set to be analyzed (alias for "SET DATA")

SHOW DATA produces a summary of a variable

SHOW GRID examines the coordinates of a grid

SET REGION sets the region to be analyzed

LIST produces a listing of data

PLOT produces a plot

CONTOUR produces a line contour plot

FILL produces a color filled contour plot

SHADE produces a shaded-area plot

VECTOR produces a vector arrow plot

POLYGON plots polygonal regions

DEFINE define new axes, grids, and symbols

STATISTICS produces summary statistics about variables and expressions

LET defines a new variable

SAVE saves data in NetCDF format

GO executes Ferret commands contained in a file

Information on all Ferret commands is available in Part II, Commands Reference, of

this manual.

Ch1 Sec4. COMMAND SYNTAX

Commands in program Ferret conform to the following template:

COMM [/Q1/Q2...] [SUBCOM[/S1/S2...]] [ARG1 ARG2 ...] [!comment]

where

COMM is a command name yes? LIST

Q1... are qualifiers of the command yes? CONTOUR/SET_UP

SUBCOM is a subcommand name yes? SHOW MODE

S1... are qualifiers of the subcommand yes? SET LIST/APPEND

ARG1... are arguments of commands yes? CANCEL MODE INTERPOLATE

notes...

● The length of the command line is limited to a maximum of 2048 characters.
● Command lines ending with back slash are regarded as incomplete -- a special

prompt is given to indicate that the next line is a continuation .
● Items in square brackets are optional.
● One or more spaces or tabs must separate the command from the subcommand

and from each of the arguments. Spaces and tabs are optional preceding
qualifiers.

● Multiple commands, separated by semi-colons, can be given on the same line.
● Command names, subcommand names, and qualifiers require at most 4

characters.
(e.g., yes? CANCEL LIST/PRECISION is equivalent to yes? CANC
LIST/PREC)

● Some qualifiers take an argument following "=" (e.g., yes?
LIST/Y=10S:10N).

● An exclamation mark normally signifies the end of a command and the start of
(optional) comment text.

● The backslash character (\), when placed directly before an exclamation point
(!), apostrophe ('), semicolon (;), or forward slash (/), will hide it ("escape it")
from Ferret.

● See the Expressions section (p. 65) for information on algebraic expressions as
arguments to commands

● See the Symbols sections (p. 209) for information on symbol substitution in
commands

Examples:

● A simple command and argument
yes? LIST sst

● A comment on the command line
yes? SET REGION/L=1/X=130:290/Y=-23:23 ! January
in the Tropical Pacific

● Commands with qualifiers and arguments
yes? VECTOR/L=30/COLOR=RED u,v
yes? LET/UNITS=M ht = z[GZ=temp] - z0

● Subcommands
yes? SET MODE METAFILE
yes? SET REGION/X=130E:120W/J=20:40/Z=0/T=1-jan-
1982:31-jan-1992

● Symbols used in a command(see p. 209) Note multiple commands on a line
yes? DEFINE SYMBOL lower = -2; DEFINE SYMBOL upper = 6
yes? SHADE/I=($lower):($upper) temp

● Use Square brackets to specify a variable's dataset or grid, range and optionally a
 delta- for the variable, or a transformation (see p.59)
yes? PLOT temp[X=180,L=1:50]
 or
yes? LIST temp[X=130:200@AVE,L=1:50:5]

 or
yes? LET/UNITS=M ht = z[GX=temp] - z0

● Immediate mode expression: enclosed in grave accents. (see p. 118) (The
expression must evaluate to a scalar, and is evaluated before the command is
parsed or executed.)
yes? CONTOUR/Z=`temp[X=180,Y=0,Z=@LOC:15]` salt

● A list of values (constant array) may be formed by enclosing values in curly
brackets. For example in a function call:
yes? LET aday = DAYS1900(1989,{3,6,9},1)

● Text for labels is enclosed in double quotes
yes? VECTOR/TITLE="title_string" x_expr, y_expr
If the string is to contain a quote, the backslash preserves it:
yes? GO my_go_script "\"(-10,10,2)"\"
 sends the string "(-10,10,2)" to the script (see p. 18) for more on go
scripts

Ch1 Sec5. GO FILES

GO files are files containing Ferret commands. They can be executed with the
command "GO filename". Throughout this manual, these files are referred to as GO
scripts or journal files (the file names end in *.jnl). There are two kinds of GO files
provided with the distribution (differing in function, not form)—demos and tools. A
list of the demonstrations and scripts can be found in Ferret's on-line documentation in
"on-line demonstrations".

Ch1 Sec5.1. Demonstration files

Demonstration GO files provide examples of various Ferret capabilities (the tutorial is
such a script) . The demonstration GO files may be executed simply by typing the Ferret
command

yes? GO demo_name
example: yes? GO vector_demo

http://www.ferret.noaa.gov/Ferret/on_line_demonstrations.html

Below is a list of the demo files provided as of 4/99 (located in directory
$FER_DIR/examples). The Unix command "Fgo demo" will list all GO scripts
containing the string "demo". Use Fgo '*' to see all the scripts that are currently
available on your system.

Name Description

tutorial brief tour through Ferret capabilities

bar_chart_demo plotting bar charts

binary_read_demo binary file reading (version 5.0 and after)

coads_demo view of global climate using the Comprehensive Ocean-
Atmosphere Data Set

constant_array_demo shows {3,5,6} constant-array syntax

custom_contour_demo customized contour plots

depth_to_density_demo contour with a user-defined variable as an axis

dods_demo using DODS to access remote datasets

edit_data_file_demo "hand-editing" variables using NetCDF datasets and
SAVE

ef_eof_demo EOF functions

ef_fft_demo FFT functions

ef_sort_demo using the SORT and SAMPLE functions

ef_wv5d_demo writing Vis5D-formatted files

error_bars_demo making error bars on plots

file_reading_demo reading an ASCII file

fnoc_demo Naval Fleet Numerical Oceanography Center data

levitus_demo T-S relationships using Sydney Levitus' climatological
Atlas of the World Oceans

log_plot_demo log plots using PPLUS in Ferret

mathematics_demo abstract function calculation

mercator_demo mercator map projection

minmax_label_demo use FINDLO and FINDHI to label extrema on a plot

mp_demo map projections

mp_stereo_demo fancy map projection techniques

multi_line_labels_demo many-line titles and other labels

multi_variable_demo multiple variables with multiple dependent axes

objective_analysis_demo interpolating scattered data to grids

overlay_on_time_axis_demo PLOT/VS and POLYGON over a time axis

palette_demo shows uses of various palettes

pattern_demo patterns on shade and fill plots

plot_swath_demo fill between line plots for "swaths" of color

plot_vectors draw vectors from u,v,lat,lon

poly_vec_demo use filled polygons to plot vector fields

polymark_demo show use of polymark script

polytube_demo "lagrangian" plots along a path using color fill

regridding_demo tutorial on regridding data

sigma_coordinate_demo how to work with sigma coordinates

spirograph_demo for-fun plots from abstract functions

splash_demo for-fun mathematical color shaded plots

statistics_demo probability distributions

symbol_demo how to use symbols for plot layouts

taylor_example1 using scripts to make Taylor diagrams

topographic_relief_demo global topography

trackplot_demo use of trackplot.jnl script

vector_demo vector plots

viewports_demo output to viewports

wire_frame_demo 3D wire frame representation

Ch1 Sec5.2. GO tools

GO tools are scripts which contain Ferret commands and perform dataset-independent
tasks. For example, "GO land" overlays the outline of the continents on your plot.
(Note: In order for Ferret to locate the GO scripts, the environment variable FER_GO
must be properly defined. See the chapter "Computing Environment," p. 235, for
guidance.)

To run any GO tool, from the Ferret command line, type,

Yes? GO scriptname

Or if the script has arguments, they follow the script name with optional comma
separators.

yes? GO script2 arg1, arg2

To find out about the script, use the /HELP qualifier, which opens the script with the
more command to type the first 20 lines of the script and allow you to see the
documentation at the start of the script.

yes? GO/HELP scriptname

To omit arguments from a GO script,

yes? GO script arg1, , arg3

Or double quotes with a space to indicate the missing item.

yes? GO script arg1 " " arg3

The Unix command Fgo has been provided to assist with locating tools within the Unix
directory hierarchy. For example,

 % Fgo grid displays all tools with the substring "grid" in their names
 % Fgo '*' displays all GO tools and demonstrations

When passing arguments to GO commands sometimes it is necessary to pass enclosing
quotation marks. An common example is the passing of the argument to the
CONTOUR/LEVELS qualifier in cases such as

CONTOUR/LEVELS="(-100) (-10,10,2) (100)" my_var

where there may be blanks embeddd inside of the string. There are 3 methods to embed
quotations inside of strings

1. use "\" to protect the quotation marks in the GO command line

yes? go my_go_script "\"(-100) (-10,10,2) (100)"\"

with the script containing the line

CONTOUR/LEVELS=$1 my_var

2. use "\" to define a symbol which contains the quotation marks

yes? DEFINE my_quoted_string \"$1\"
yes? CONTOUR/LEVELS=($my_quoted_string) my_var

3. use the symbol substitution syntax to add quotes to theGO argument

Yes? CONTOUR/LEVELS=$1&|*>"*"&

Of course, in the above examples one could also simply use

yes? CONTOUR/LEVELS="$1" my_var

Below is a table of the tools provided with your Ferret installation. Some tools accept
optional arguments to control details. Use Fgo -more script_name for details on
a script.

 Tool name Description

OVERLAYS

 basemap a geographical basemap of continents to overlay on

 land overlays continental boundaries (color controls)

 land_detailed overlays detailed continents, national and state boundaries,
 rivers

 bold_land overlays darker continental boundaries

 fland overlays filled continents (color and resolution controls)

 focean overlays ocean mask (for terrestrial plots)

 multi_xaxis_overlay Overlay a line plot over an existing one, with a new
horizontal axis

 multi_yaxis_overlay Overlay a line plot over an existing one, with a new vertical
axis

 graticule sets the plot axis style to use a graticule (rather than tics)
(See also the /GRATICULE qualifier on all plot
commands, and MODE GRATICULE)

 tics resets the plot style to use axis tics (rather than a graticule)

 gridxy overlays a "graticule" at the I,J grid locations (see also the
/GRAT qualifier for plot commands, and MODE
GRATICULE)

 gridxz overlays a "graticule" at the I,K grid locations

 gridxt overlays a "graticule" at the I,L grid locations

 gridyz overlays a "graticule" at the J,K grid locations

 gridyt overlays a "graticule" at the J,L grid locations

 gridzt overlays a "graticule" at the K,L grid locations

 box draws a box at the specified location on the plot

 ellipse draws an ellipse at the specified location on the plot

MATHEMATICAL

 frequency_histogram makes a frequency distribution plot (histogram) of data

 ts_frequency creates a 2-variable histogram (typically an
oceanographer's TS density diagram)

 polar defines R and THETA from X and Y to perform (limited)
polar plots

 regressx defines variables for linear regression along X axis

 regressy defines variables for linear regression along Y axis

 regressz defines variables for linear regression along Z axis

 regresst defines variables for linear regression along T axis

 unit_square sets unit square as default for abstract variables

 variance defines variables to compute variances and covariances

 var_n refines TVARIANCE with corrected n/n+1 factors

 dynamic_height defines Ferret variables for dynamic height calculations

SAMPLE DISPLAYS

 line_samples draws specimens of the available line styles

 line_thickness draws examples of pen color/thickness styles in PPLUS

 fill_samples draws specimens of the available fill styles

 show_symbols draws specimens of the default symbols

 show_88_syms draws specimens of all 88 PPLUS symbols

GRAPHICS

 bar_chart makes a color-filled bar chart from a line of data

 bar_chart2 makes a bar chart using hollow rectangles

 centered_vectors makes a vector plot with coords at vector midpoints

 scattered_vectors makes a vector plot from an ASCII file: x,y,u,v

 stick_vectors makes a stick vector plot of a line of U,V values

 extremum annotate contour extrema on a plot

 split_z oceanographic-style plot with 2 z-axis scalings

 taylor_example1 demonstrates tools for making Taylor diagrams

PLOT APPEARANCE

 margins tweak the sizing of the plot on the page

 magnify [factor] increases the data plotting area (area inside the axes)

 unmagnify restores the plot origin and axis lengths to default values

 black sets video background to black, foreground to white

 white sets video background to white, foreground to black

 bold sets up PLOT+ and Ferret to produce bolder-looking plots

 unbold resets plot environment to normal after "GO bold"

 unlabel [label #] removes a specified (numbered) PPLUS movable label

 remove_logo removes labels 1–3 that form the Ferret logo

 box_plot produces a plot with "bare" axes (no tics, no labels)

 portrait set window for 8.5 x 11 portrait page

 portrait1x2 set window for 8.5 x 11 portrait page and two viewports

 portrait1x3 set window for 8.5 x 11 portrait page and three viewports

 portrait1x4 set window for 8.5 x 11 portrait page and four viewports

 portraitNxN set window for 8.5 x 11 portrait page and NxN viewports

 reminder place small annotations in upper left corner of plot

COLOR

 try_palette [pal] displays palette appearance for various numbers of color
levels

 try_centered_palette displays centered palette appearance for various numbers of
levels

 exact_colors sets up Ferret and PPLUS to modify individual colors in a
color palette

 squeeze_colors modifies a color palette by squeezing and stretching the
color scale

MULTIPLE X AND Y AXES (run demo: yes? GO multi_variable_plots)

 left_axis_plot plots a single variable preparing for a 2nd axis on the right

 right_axis_plot overlays a plot of a single variable using an axis on the
right

 multi_xaxis_plot1 draws a plot formatted for later overlays using multiple X
axes

 multi_xaxis_overlay overlays a variable with a distinct X axis

 multi_yaxis_plot1 draws a plot formatted for later overlays using multiple Y
axes

 multi_yaxis_overlay overlays a variable with a distinct Y axis

MAP PROJECTIONS (run demo: yes? GO mp_demo)

 mp_~name~ individual projections include
bonne, craster_parabolic, eckert_greifendorff, eckert_iii,
eckert_v, hammer, lambert_cyl, mcbryde_fpp, mercator,
orthographic, plate_caree, polyconic, sinusoidal,
stereographic_eq, stereographic_north,
stereographic_south, vertical_perspective, wagner_vii,
winkel_i

 mp_aspect set the appropriate window aspect ratio for this map
projection

 mp_fland overlays "map projected" filled continents (color controls)

 mp_graticule overlays "map projected" graticule (color controls)

 mp_grid.jnl Associates a data grid with a predefined map projection.

 mp_label plots a label using world coordinates

 mp_land overlays "map projected" continental boundaries (color
controls)

 mp_land_stripmap creates a land-centric, interrupted "stripmap" using the
current map projection

 mp_line overlays "map projected" plotted data

 mp_ocean_stripmap creates an ocean-centric, interrupted "stripmap" using the
current map projection

 mp_polymark overlays "map projected" polygons

 mp_polymark Plot polygons using a predefined map projection.

 mp_polytube Plot a colored tube using a predefined map projection.

 mp_trackplot Plot a trackplot using a predefined map projection

 mp_viewport_aspect Define a viewport for plotting map projections

SAMPLING A GRIDDED FIELD

 bullseye locate a bullseye in a 2-D field

 digitize obtain data values from a plot using the cursor

 vertical_section create 2-D vertical section from a 3-D field

 samplexy_demo create 2-D vertical section along any path

UTILITY SCRIPTS

 datestring.jnl create date string from year, month, day, etc

TESTS

 test tests proper functioning of FER_GO

 ptest produces a quick test plot

 squares creates a filled-area test plot

Ch1 Sec5.3. Writing GO tools

A GO tool ("GO script," "journal file," ...) is simply a sequence of Ferret commands
stored in a file and executed with the GO command. Writing a simple GO tool requires
nothing more than typing normal commands into a file.

To write a robust GO tool that may be shared, however, certain guidelines should be
followed:

 1) the GO tool should be well documented

 2) the GO tool should leave the Ferret context unmodified

 3) the GO tool may need to run "silently"

 4) the GO tool may need to accept arguments (a maximum of 99 parameters)

Ch1 Sec5.3.1. Documenting GO tools

Documentation consists primarily of well-chosen comment lines (lines beginning with
an exclamation mark). In addition, a line of this form should be included:

! Description: [one-line summary of your GO tool]

This line is displayed by the Fgo tool.

Ch1 Sec5.3.2. Preserving the Ferret state in GO tools

Often a complex GO tool requires setting data sets, modifying the current region, etc.
But to a user executing this tool its behavior may seem erratic if the user's previous
context is modified by running the tool. A tool can restore the previous state of Ferret
by these means:

region: Save the current default region with the command DEFINE
REGION/DEFAULT save. Restore it at the end of your GO tool with SET
REGION save.

data set: Save the current default data set with SET DATA/SAVE. Restore it at the
end of your GO tool with SET DATA/RESTORE.

grid: Save the current default grid set with SET GRID/SAVE. Restore it at the end
of your GO tool with SET GRID/RESTORE.

modes: If you modify a mode inside your GO tool by issuing a SET MODE or a
CANCEL MODE command the original state of that mode can be restored
using SET MODE/LAST.

Ch1 Sec5.3.3. Silent GO tools

If a user has set mode "verify" then by default every line of your GO tool, including
comment lines, will be displayed at the screen as Ferret processes it. To make your GO
tool run silently include the command CANCEL MODE VERIFY at the beginning of
the GO tool and SET MODE/LAST VERIFY at the end. If the backslash character "\" is
found at the beginning of any line that single line will not be displayed regardless of the
state of MODE VERIFY. Thus the command "\CANCEL MODE VERIFY" is often the
first line of a GO tool. Note also that the command LET/SILENT is useful in GO tools
which need to define variables.

Ch1 Sec5.3.4. Arguments to GO tools

Arguments (parameters) may be passed to GO tools on the command line. There is an
 upper limit of 99 arguments allowed. For example,

yes? GO land red

passes the string "red" into the GO file named land.jnl. Inside the GO tool the argument
string "red" is substituted for the string "$1" wherever it occurs. The "1" signifies that
this is the first argument—similar logic can be applied to $1,... $99 or $0 where $0 is
replaced by the name of the GO tool itself. "$*" is replaced by all the arguments as a
single string, separated by spaces.

If there are more than 9 arguments, the syntax $nn (nn may be 1 through 99) is
equivalent to to ($nn), however the parentheses enclosed form is generally preferred as
it avoids ambiguities. Specifying $12.dat is equivalent to ($12).dat but is less clear.

As Ferret performs the substitution of $1 (or other) arguments it offers a number of
string processing and error processing options. For example, without these options, if a
user failed to supply an argument to "GO land" then Ferret would not know what to
substitute for $1 and it would have to issue an error message. A default value can be
supplied by the GO tool writer using the syntax

$1%string%

for example,

$1%black%

inside land.jnl would default to "black" if no color were specified. Note that in the
example percent signs were used to delimit the default string but any of the characters !
$ % or & also work as delimiters.

If the argument is a 2-digit number, and we are making a substitution, the replacement
text goes inside the parentheses. For example, plot the variable passed as argument 1
with the color given by argument 12, or green if no argument 12 is given:

PLOT/COLOR=($12#green#) $1

In another case it might not be appropriate to supply a default string but instead it would
be desirable to issue an instructional error message. The "<" character indicates an error
message text:

$1"<you must supply an argument to this GO tool"

In still other cases there are a range of acceptable arguments but all other arguments are
illegal. The allowable arguments can be specified following "|" (vertical bar) characters
as in this example:

$1"|black|red|<You must specify black or red"

or a default of "black" could be specified together with the options as

$1"black|black|red|"

In the interest of "friendliness" a GO file may want to allow the user to specify a string
other than the string actually needed by the GO tool. For example, in older Ferret
versions red plot line was actually obtained by the PLOT command qualifier
/LINE=2—the string "red" never appeared in this command. To allow a user to specify
"red" and yet have the string "2" substituted, Ferret has provided the replacement arrow
">". Thus

$1"1|red>2|"

specifies a default string of "1" if no argument is given but substitutes "2" if "red" is
supplied. In a typical GO tool line, defaults, options, substitutions, and an error message
are combined like this:

PLOT/LINE=$1"1|red>2|green>3|blue>4|<must be red, green, or blue"

Note that the error message will be issued only if some color other than "red," "green,"
or "blue" is specified; if no argument is specified then "1" is substituted.

An asterisk (*) can be used to designate that any text whatsoever is acceptable as an
option.

$1"|black|red|<You must specify black or red"

would never generate an error and would use line style 7 (thick black) if an
unrecognized argument string such as "orange" were given.

An asterisk (*) can also be used on the right-hand side of a substitution, in which case it
stands for the entire original argument string. For example

SET VARIABLE/TITLE=$1%*>"*"%

will place double quotation marks around the string in argument 1.

Ch1 Sec5.3.5. Documentation and checking arguments to GO
tools

A final style note to keep in mind when writing GO tools that use arguments: providing
error message feedback and appropriate documentation for the user is essential. In
complex GO tools, all arguments should be checked at the beginning of the GO tool
using the no-op command (has no effect) "QUERY/IGNORE". Thus the GO tool
land.jnl might contain these lines at the beginning:

! check the argument
QUERY/IGNORE $1"1|red|green|blue|<must be red, green, or blue"

Once argument errors have been trapped and reported, the lengthy error text would not
be needed again in the GO tool.

GO tools that use arguments should also be carefully documented. There are numerous
examples provided with Ferret; try, for example, the Unix commands

% Fgo -more fland.jnl
% Fgo -more stick_vectors

or

% Fgo -more squeeze_colors

Ch1 Sec5.3.6. Flow Control in GO tools

There are several Ferret commands and techniques to assist with flow control in your
GO scripts.

GO (subroutines)

The GO command may be used inside of a GO script (tool) to execute another (nested)
GO script. If an error occurs inside of a nested GO script and SET MODE
IGNORE_ERROR has not been issued then the GO script will be interrupted and

control returns to the command line.

REPEAT (looping)

The REPEAT command may be used to execute loops within Ferret. The loop "counter"
may be an index (I,J,K, or L) or a world coordinate (longitude, latitude, depth, or time).
The increment between loop iterations need not correspond to the spacing of points on a
grid. When used in conjunction with the "d" options of SET REGION, such as SET
REGION/DI="-5:-5" the loops may be used to zoom in or out of a region or to pan a
limited-width window of view across a larger region. See the Advanced Movie-Making
section (p. 159) of this manual for further details.

IF-THEN-ELSE (conditional execution)

An IF-THEN-ELSE syntax can be used to conditionally execute Ferret commands. It
may be used in two styles—single line and multi-line. See the IF command (p. 333) in
the Commands Reference section of this manual for further details.

Ch1 Sec5.3.7. Debugging GO tools

As the complexity of Ferret GO scripts increases it becomes more challenging to locate
and correct errors in GO scripts. This is especially true if, as so many GO scripts do, the
scripts are made silent by containing the command CANCEL MODE VERIFY. In a
silent script it can be unclear from where within the script an error message is
originating.

A special VERIFY mode has been provided to assist with locating the source of these
error messages

SET MODE VERIFY:ALWAYS

The ALWAYS argument to this command instructs Ferret to ignore CANCEL MODE
VERIFY commands inside of command files. All of the script commands that Ferret
executes will be echoed when this mode is set. Error messages will appear with the
commands that generated them. To restore normal non-debugging operations issue
CANCEL MODE VERIFY or SET MODE VERIFY (no argument) interactively from

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5-Advanced_Movie

the yes? prompt.

Complex webs of variable definitions (defined with LET or DEFINE VARIABLE) may
also create challenges for debugging scripts. See Debugging Complex Hierarchies of
Expressions (p. 126) for further discussion of this topic.

Ch1 Sec6. SAMPLE DATA SETS

A number of demonstration data sets are included with this distribution. Several of these
data sets are used by the demonstration "GO" files, above. The data sets should be
accessible simply by typing the Ferret command

yes? USE data_set_name for example,
yes? USE coads_climatology

Data set Description

etopo120 relief of the earth's surface at 120-minute resolution

etopo60 relief of the earth's surface at 60-minute resolution

levitus_climatology subset of the Climatological Atlas of the World Oceans by
Sydney Levitus (Note: the updated World Ocean Atlas, 1994, is
also available with Ferret)

coads_climatology 12-month climatology derived from 1946–1989 of the
Comprehensive Ocean/Atmosphere Data Set

monthly_navy_winds monthly-averaged Naval Fleet Numerical Oceanography Center
global marine winds (1982–1990)

esku_heat_budget Esbensen-Kushnir 4×5 degree monthly climatology of the
global ocean heat budget (25 variables)

Ch1 Sec7. UNIX TOOLS

A number of tools are provided with Ferret to assist with Unix-level activities: on-line
help, converting data to Ferret's formats, locating files, etc. They are located in the
Ferret installation area—typically $FER_DIR/bin. See the chapter "Copmuting
Environment", section "Setting up to run Ferret" (p. 235), if the tools are not available
on-line. They are described below.

Faddpath Usage: Faddpath new_path
Faddpath will add a new path name to the default lists of directories that Ferret searches
a) in response to the SET DATA command; b) when looking for grid definition files; c)
when looking for data files.

Fapropos Usage: Fapropos string (i.e. % Fapropos regridding)
Fapropos searches the Ferret User's Guide for all occurrences of the given word or
string. The string is not case sensitive. If the string contains multiple words it must be
enclosed in quotation marks. Fapropos will list all lines of the User's Guide that contain
the word or string and report their line numbers. The line numbers may be used with
Fhelp to enter the User's Guide at the desired location.

Fdata Usage: Fdata data_file_substring
Searches the list of directories contained in the environment variable FER_DATA to
find the data files whose names contain the indicated substring. For example,

 % Fdata coads

locates the data files containing "coads" in their names. (Use this command to locate
NetCDF data sets by giving the string "cdf".)

Fdescr Usage: Fdescr des_name_substring

Searches the list of directories contained in the environment variable FER_DESCR to
find the descriptor files whose names contain the indicated substring. For example,

 % Fdescr coads

locates the descriptor files containing "coads" in their names. ("Fdescr .des" will list all
accessible descriptors.)

Fenv Usage: Fenv
Prints the values of environment variables used by Ferret

Fgo Usage: Fgo name_substring
Searches the list of directories contained in the environment variable FER_GO to find
the GO command files whose names contain the indicated substring. For example,

 % Fgo grid

locates the Ferret tools that contain "grid".

Fgrids Usage: Fgrids gridfile_substring
Searches the list of directories contained in the environment variable FER_GRIDS to
find the grid definition files whose names contain the indicated substring. For example,

 % Fgrids fnoc

locates the grid definition files containing "fnoc" in their names. ("Fgrids .grd"
will list all accessible grid files.)

Fpalette Usage: Fpalette name_substring
Searches the list of directories contained in the environment variable FER_PALETTE to
find the palette files whose names contain the indicated substring. For example,

 % Fpalette blue

locates the palette files containing "blue" in their names.

Fpurge Usage: Fpurge filename_template
Fpurge is a support routine to manage multiple versions of files created by
Ferret—particularly journal files and graphic metafiles. Fpurge will remove all versions

of a file except the current version. For example, "Fpurge ferret.jnl" will eliminate all
past versions of ferret.jnl in the current directory.

Fsort Usage: Fsort filename_template
Fsort is a support routine for sorting file versions. Fsort reorders the incorrect ordering
of emacs-style version numbers assigned by the Unix "ls" utility. For example, when
sorting, ls will place filename.~19~ before filename.~2~. "Fsort filename*" will take
care of this problem. Fsort may be used in Unix pipes.

Ch1 Sec8. HELP

Ch1 Sec8.1. Examples and demonstrations

As discussed earlier in this chapter (Getting Started, GO files), the demonstrations that
come with the Ferret distribution are a source of help. See the introductory chapter,
section "Demonstration files," (p. 16) for a list of demonstrations, or look in
$FER_DIR/examples; you may find something that addresses your problem.

Ch1 Sec8.2. Help from within Ferret

Typing "help" while running Ferret will give you information on using the Unix tool
Fhelp to access the User's Guide.

The Ferret command SHOW COMMANDS will list all Ferret commands; SHOW
COMMAND "command" will display all qualifiers for the specified command.

The Ferret command SHOW FUNCTIONS lists all Ferret functions and their
arguemnts. SHOW FUNCTION *string* will show all functions containing the string
"string". SHOW FUNCTIONS EXTERNAL shows the names and arguments of
external functions (see External Functions Chapter, page 271)

The Ferret command SHOW TRANSFORMS lists all Ferret transforms, including

variable transforms and regridding transforms.

If you want to get details on a script, type 'GO/HELP scriptname" to see the
documentation at the start of the script. For example:

GO/HELP land

When writing scripts, include documentation listing the purpose of the script and its
arguments in the first few lines of the script. Then this feature will let you and others
who may use the script get instant information about it.

Ch1 Sec8.3. Web-based information

From the Ferret web page, at http://www.ferret.noaa.gov/Ferret, see these sections:

1. Ferret support policy outlines the support available to users and sources of
information

2. FAQ section discusses many topics where questions often arise.

3. Email archives, which are searchable and contain questions and solutions from the
Ferret users group.

4. Documentation section, including release notes, this manual which is updated
regularly on the web, and on-line information on demonstration scripts, data formats,
and the Plot Plus graphics used by Ferret.

For help with Ferret see our Support Policy

Last modified: December 16, 2004

http://www.ferret.noaa.gov/Ferret
http://www.ferret.noaa.gov/Ferret/ferret_support.html
http://www.ferret.noaa.gov/Ferret/FAQ/ferret_FAQ.html
http://www.ferret.noaa.gov/Ferret/Mail_Archives/ferret_mail_archives.html
http://www.ferret.noaa.gov/Ferret/Documentation/ferret_documentation.html
file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 2: DATA SET BASICS

Ch2 Sec1. OVERVIEW

Ferret accepts input data from both ASCII and binary files and recognizes two standardized,
self-describing data formats—NetCDF, and TMAP. Network Common Data Format
(NetCDF) is the suggested method of data storage.

SET DATA_SET or just SET DATA specifies a data set for access. ASCII and binary files
can be read using SET DATA/EZ (also known as "FILE"). To unambiguously specify the
format of a data set, include the extension .cdf or .des in its name, or use the qualifier
/FORMAT=CDF.

To examine what each data set consists of (variables, grids, etc.) after specifying them with
SET DATA, use SHOW DATA. This command displays the variables in the data set and
over what geographical and time ranges they are defined.

Here is an example of Ferret's output:

 yes? SET DATA coads_climatology
 yes? SHOW DATA
 currently SET data sets:
 1> /home/e1/tmap/fer_dsets/descr/coads_climatology.des (default)
name title I J K L
SST SEA SURFACE TEMPERATURE 1:180 1:90 1:1 1:12
AIRT AIR TEMPERATURE 1:180 1:90 1:1 1:12
SPEH SPECIFIC HUMIDITY 1:180 1:90 1:1 1:12
WSPD WIND SPEED 1:180 1:90 1:1 1:12
UWND ZONAL WIND 1:180 1:90 1:1 1:12
VWND MERIDIONAL WIND 1:180 1:90 1:1 1:12
SLP SEA LEVEL PRESSURE 1:180 1:90 1:1 1:12

If multiple data sets have been requested in a single Ferret session, the last requested will be
the default data set. To specify other data sets, use the name of the data set or the number of
the set as given by the SHOW DATA statement. For example:

yes? LIST/D=2 temp

will list the data for the variable "temp" in data set number 2 as displayed by SHOW
DATA/BRIEF, while

yes? LIST temp[D=levitus_climatology] - temp[D=coads_climatology]

will list the differences between the variable "temp" in data set "levitus_climatology" and
data set "coads_climatology."

Once a data set has been opened, you can find the data set name via the RETURN keyword
(see p. 120):

yes? say `var,RETURN=dset`
yes? say `var,RETURN=dsetnum`

If a filename begins with a number, Ferret does not recoginze it, but the file may be
specified using its unix pathname, e.g.

yes? use "./123"

or

yes? file/var=a "./45N_180W.dat"

Ch2 Sec2. NETCDF DATA

The Network Common Data Format (NetCDF) is an interface to a library of data access
routines for storing and retrieving scientific data. NetCDF allows the creation of data sets
which are self-describing and platform-independent. NetCDF was created under contract
with the Division of Atmospheric Sciences of the National Scientific Foundation and is
available from the Unidata Program Center in Boulder, Colorado (unidata.ucar.edu).

See the chapter "Converting Data to NetCDF" (p. 245), for a complete description of how to
create NetCDF data sets or how to convert existing data sets into NetCDF.

To output a variable in NetCDF, simply use:

yes? LIST/FORMAT=CDF variable_name

LIST/FORMAT=CDF (alias SAVE) can also be used with abstract variables:

yes? SAVE/FILE=example.cdf/I=1:100 sin(I/100)

This will create a file named example.cdf.

The current region and data sets determine the variable names in the saved file and the
range over which they are saved. Saved data can then be accessed as follows:

yes? USE example

(USE is an alias for SET DATA/FORMAT=CDF, see)

To read a NetCDF dataset that is on a DODS server, simply specify the DODS address in
quotes:

yes? use "http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc"

If a filename is not specified, Ferret will generate one. (See command SET LIST/FILE in
the Commands Reference section, p. 377). An example of converting TMAP-formatted data
to NetCDF goes as follows:

yes? SET DATA coads_climatology
yes? SAVE/L=1 sst,airt,uwnd,vwnd

These commands will save sst, airt, uwnd, and vwnd at the first time step over their entire
regions to a NetCDF file named by Ferret.

One advantage to using NetCDF is that users on a different system (i.e., VMS instead of
Unix) with different software (i.e., with an analysis tool other than Ferret) can share data
easily without substantial conversion work. NetCDF files are self-describing; with a simple
command the size, shape and description of all variables, grids and axes can be seen.

Ch2 Sec2.1. NetCDF data and strides

With Ferret version 5.1 , the internal functioning of netCDF reads has been changed when
"strides" are involved. Suppose that CDFVAR represent a variable from NetCDF file. In
version 5.0 and earlier the command PLOT CDFVAR[L=1:1000:10] would have read the
entire array of 1000 points from the file; Ferret's internal logic would have subsampled

every 10th point from the resulting array in a manner that was consistent for NetCDF
variables, ASCII variables, user defined variables, etc. In V5.1 strides applied to netCDF
variables are given special treatment -- subsampling is done by the netCDF library. The
primary benefit of this is to make network access to remote data sets via DODS more
efficient. Beginning with Ferret v5.4, strides can be applied across the "branch point" of a
modulo variable without loss of efficiency for netCDF data set, as long as the stride is an
integer fraction of the modulo length times the number of points on the axis. A remote
satellite image of size, say, 1000x1000 points x 8 bit depth (8 megabytes) can efficiently be
previewed using

SHADE DODS_VAR[i=1:1000:10,j=1:1000:10]

If a grid or axis from a netCDF file is used in the definition of a LET-defined variable (e.g.
LET my_X = X[g=sst[D=coads_climatology]]) that variable definition will be invalidated
when the data set is canceled (CANCEL DATA coads_climtology, in the preceding
example). There is a single exception to this behavior: netCDF files such as
climtological_axes.cdf, which define grids or axes that are not actually used by any
variables. These grids and axes will remain defined even after the data set, itself, has been
canceled. They may be deleted with explicit use of CANCEL GRID or CANCEL AXIS.

Ch2 Sec2.2. NetCDF Data with the bounds attribute

The CF standard for NetCDF files defines a bounds attribute for coordinate axes, where the
upper and lower bounds of the grid cells along an axis are specified by a bounds variable
which is of size n*2 for an axis of length N. See Section 7.1 of the CF document

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-1.0.html

The coordinates on the axis may be anywhere within the cells defined by the upper and
lower cell bounds. Ferret uses these as the upper and lower bounds of of axis cells (also
known as boxes). They may be listed or otherwise accessed using the pseudo-variables
XBOXLO, XBHOXH, YBOXLO, etc.

For example, a simple NetCDF file with bounds would have the following ncdump output:

netcdf irrx {
dimensions:
 XAX = 4 ;
 bnds = 2 ;

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-1.0.html

variables:
 double XAX(XAX) ;
 XAX:point_spacing = "uneven" ;
 XAX:axis = "X" ;
 XAX:bounds = "XAX_bnds" ;
 double XAX_bnds(XAX, bnds) ;
 float V(XAX) ;
 V:missing_value = -1.e+34f ;
 V:_FillValue = -1.e+34f ;
 V:long_name = "SEA SURFACE TEMPERATURE" ;

// global attributes:
 :history = "FERRET V5.60 4-Jun-04" ;
data:

XAX = 1, 2, 5, 6 ;

XAX_bnds =
 0., 1.5,
 1.5, 2.5,
 2.5, 5.5,
 5.5, 7. ;

V =
 28.20222,
 28.36456, 28.35381,0
 28.2165,
 28.48889,
 28.31556 ;
}

The CF standard allows for axes in a file that may have discontiguous bounds (the upper
bound of one cell is not the same as the lower bound of the next cell). Ferret does not allow
such an axis. When discontiguous bounds are encountered in a file, we arbitrarily choose to
use the lower bounds throughout, with the upper bound of the topmost cell to close the
definition. This way all axes have contiguous upper and lower bounds. A warning message
is issued.

DEFINE AXIS/BOUNDS may be used to create an axis with cell bounds. All irregular
axes are saved with a bounds attribute (beginning with Ferret v5.70) and the user may
request that all axes be written with the bounds attribute with the SAVE/BOUNDS
command

Ch2 Sec2.3. Multi-file NetCDF data sets

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set.
Such data sets are referred to as "MC" (multi CDF) data sets. They are particularly useful
to manage the outputs of numerical models. MC data sets use a descriptor file, in the style
of TMAP-formatted data sets. The data set is referred to inside Ferret by the name of this
descriptor file.

A collection of NetCDF files is suitable to form a multi-file data set if

1) The files are connected through their time axis—each file represents one or more time
snapshots of the variables it contains.

2) All non-time-dependent variables in the data set must be contained in the first file of the
data set (or those variables will not appear in the merged, MC, data set).

Note that previous to version 5.2, each file is self-documenting with respect to the time axis
of the variables—even if the time axis represents only a single point. (All of the time axes
must be identically encoded with respect to units and date of the time origin.) In version
5.3 and higher these checks are not performed. This means that the MC descriptor
mechanism can be used to associate into time series groups of files that are not internally
self-documenting with respect to time. See Chapter 10, section 4 (p. 266)

Beginning with version 5.8 of Ferret the stepfiles may contain different scale and offset
values for the variables they contain. (p. 253). Ferret reads and applies the scale and offset
values as data from each stepfile is read. Note that the commands

yes? SAY `var, RETURN=nc_offset`

yes? SAY `var, RETURN=nc_scale`

return the latest scale and offset value that were applied.

A typical MC descriptor file may be found in the chapter "Converting to NetCDF", in the
section "Creating a multi-NetCDF data set." (p. 266)

Ch2 Sec2.4. Non-standard NetCDF data sets

As discussed in the Chapter, "Converting Data to NetCDF," (p. 245) Ferret expects netCDF
files to adhere to the COARDS conventions (http://www.ferret.noaa.gov/noaa_coop/
coop_cdf_profile.html). If the files do not adhere to the COARDS conventions, Ferret will
still attempt to access them. Often, the user can use Ferret controls for regridding,
reshaping, and otherwise transforming data to recover the intended file contents.

Here are a few common ways in which NetCDF files may deviate from the COARDS
standard and how one may cope with those situations in Ferret.

● Files with disordered coordinates

In the COARDS conventions an axis (a.k.a. "coordinate variable") must have monotonically-
increasing coordinate values. If the coordinates are disordered or repeating in a netCDF file,
then Ferret will present the coordinates to the user (in SHOW DATA) as a dependent
variable, whose name is the axis name, and it will substitute an axis of the index values 1, 2,
3, ... Note that Ferret will apply this same behavior when files have long irregular axis
definitions that exceed Ferret's axis memory capacity.

● Files with reverse-ordered axes

If the coordinates of an axis are monotonically decreasing, instead of increasing, Ferret will
transparently reverse both the axis coordinates and the dependent variables that are defined
upon that axis. Note that if Ferret writes a reverse-ordered variable to a new netCDF file
(with the SAVE command), the coordinates and data in the output file will be in
monotonically increasing coordinate order—reversed from the input file.

If the values of a dependent variable are reversed, but there is no associated coordinate axis
then use attach a minus sign to the corresponding axis orientation in the USE/ORDER=
 qualifier to designate that the variable(s) should be reversed along the corresponding axis.

● Files with "invalid" variable names

The COARDS standard specifies that variable names should begin with a letter and be
composed of letters, digits, and underscores. In files where the variable names contain other
letters, references to those variable names in Ferret must be enclosed in single quotes.

● Files with permuted axis ordering

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

The COARDS standard specifies that if any or all of the dimensions of a variable have the
interpretations of "date or time" (a.k.a. "T"), "height or depth" (a.k.a. "Z"), "latitude" (a.k.a.
"Y"), or "longitude" (a.k.a. "X") then those dimensions should appear in the relative order
T, then Z, then Y, then X in the CDL definition corresponding to the file. In files where the
axis ordering has been permuted the command qualifiers USE/ORDER= (Command
Reference, p. 370) allow the user to inform Ferret of the correct permutation of
coordinates. Note that if Ferret writes a permuted variable to a new netCDF file (with the
SAVE command), the coordinates and data in the output file will be in standard X-Y-Z-T
ordering (as indicated in the user’s /ORDER specification)—permuted from the original file
ordering. See the Command Reference (p. 299) for a complete description of the ORDER
qualifier.

● Files with more than four dimensions

The COARDS standard specifies that a NetCDF file may be created with more than four
dimensions. However the Ferret framework allows just four dimensions at this time.

Ch2 Sec2.5. NetCDF and non-standard calendars

The NetCDF conventions document discusses and defines usage for different calendar axes.
 hese conventions for calendars are implemented in Ferret version 5.3 See:

 http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html#cal

The calendars Ferret allows are:

GREGORIAN or STANDARD (default) Ferret uses the proleptic Gregorian calendar,
which is the Gregorian calendar extended to
dates before 1582-10-15.

NOLEAP or 365_DAY All years are 365 days long.

NOLEAP or 365_DAY All years are 365 days long.

ALL_LEAP or 366_DAYNL All years are 366 days long.

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html#cal

360_DAY All years are 360 days divided into 30 day
months.

JULIAN Julian calendar; leap years with no
adjustment at the turn of the century.

These calendars are compatible with the Udunits standard which has slightly different
naming conventions.

http://www.unidata.ucar.edu/packages/udunits/udunits.dat

The NetCDF conventions recommend that the calendar be specified by the attribute
 time:calendar which is assigned to the time coordinate variable when there is a non-
Gregorian calendar associated with a data set, i.e.

 time:calendar=noleap

Ferret reads this attribute when it is present in a NetCDF file and assigns the appropriate
calendar identifer to the variable. When a variable has a non-Gregorian calendar, the
attribute is written to a NetCDF file when the variable is output to a NetCDF file.

Ch2 Sec3. TMAP-FORMATTED DATA

As of Ferret version 2.30, NetCDF is the suggested format for data storage (see the chapter,
"Converting to NetCDF," p. 245). This section describing TMAP information is included
only for users who already work with data in TMAP format.

To access TMAP-formatted data sets use

SET DATA_SET TMAP_set1, TMAP_set2, ...

TMAP_setn must be the name of a descriptor file for a data set that is in TMAP "GT" (grids-
at-timesteps) or "TS" (time series) format. ("Ferret" format and "TMAP" format are
synonyms.)

If the directory portion of the filename is omitted the environment variable FER_DESCR

http://www.unidata.ucar.edu/packages/udunits/udunits.dat

will be used to provide a list of directories to search. The order of directories in
FER_DESCR determines the order of directory searches. If the extension is omitted a
default of ".des" will be assumed (if the filename has more than one period, the extension
must be given explicitly).

Descriptors

For every TMAP-formatted data set there is a descriptor file containing summary
information about the contents of the data set. This includes variable names, units, grids,
and coordinates. When the command SET DATA_SET is given to Ferret pointing to a GT-
formatted or TS-formatted data set, it is the name of the descriptor file that must be
specified.

Ch2 Sec4. BINARY DATA

Ferret can read binary data files that are formatted with and without FORTRAN record
length headers (binary files without FORTRAN record length formatting are also known as
"stream" files).

Ch2 Sec4.1. FORTRAN-structured binary files

Files containing record length information are created by FORTRAN programs using the
 ACCESS="SEQUENTIAL" (the FORTRAN default) mode of file creation and also by
Ferret using LIST/FORMAT=unf. Files that contain FORTRAN record length headers must
have all data aligned on a 4-byte boundary. Suppose "rrrr" represents 4 bytes of record
length information and "dddd" represents a 4-byte data value. Then FORTRAN-structured
files are organized in one of the following two ways:

Ch2 Sec4.1.1. Records of uniform length

A FORTRAN-structured file with records of uniform length (3 single-precision floating
point data values per record in this figure) looks like this:

rrrr dddd dddd dddd rrrr ...

FORTRAN code that creates a data file of this type might look something like this
(sequential access is the default and need not be specified in the OPEN statement):

REAL VARI(10), VAR2(10), VAR3(10)
...
OPEN(UNIT=20,FORMAT='UNFORMATTED',ACCESS='SEQUENTIAL',FILE='MYFILE.DAT')
...
DO 10 I=1,10
 WRITE (20) VAR1(I), VAR2(I), VAR3(I)
10 CONTINUE
....

To access data from this file, use

yes? SET DATA/EZ/FORMAT=UNF/VAR=var1,var2,var3/COL=3 myfile.dat or,
yes? FILE/FORMAT=UNF/VAR=var1,var2,var3/COLUMNS=3 myfile.dat

This is very similar to accessing ASCII data with the addition of the /FORMAT=unf
qualifier. The /COLUMNS= qualifier tells Ferret the number of data values per record.
Although optional in the above example, this qualifier is required if the number of data
values per record is greater than the number of variables being read (examples follow in
section "ASCII Data").

Ch2 Sec4.1.2. Records of non-uniform length

A FORTRAN-structured file with variable-length records might look like this:

rrrr dddd dddd rrrr
rrrr dddd rrrr
rrrr dddd dddd dddd dddd rrrr
etc.

With care, it is possible to read a data file containing variable-length records which was
created using the simplest unformatted FORTRAN OPEN statement and a single WRITE
statement for each variable. Use /FORMAT=stream to read such files. Note that sequential
access is the FORTRAN default and does not need to be specified in the OPEN statement:

REAL VAR1(1000), VAR2(500)
...

OPEN (UNIT=20, FORMAT="UNFORMATTED", FILE="MYFILE.DAT")
...
WRITE (20) VAR1
WRITE (20) VAR2
....

Use the qualifier /SKIP to skip past the record length information (/SKIP arguments are in
units of words), and define a grid which will not read past the data values. The
 /COLUMNS= qualifier can be used when reading multiple variables to specify the number
of words separating the start of each variable:

yes? DEFINE AXIS/X=1:500:1 xaxis
yes? DEFINE GRID/X=XAXIS mygrid
yes? FILE/FORMAT=stream/SKIP=1003/GRID=mygrid/VAR=var2 myfile.dat

The argument 1003 is the sum of the 1000 data words in record 1, plus 2 words of record
length information surrounding the data values in record 1 (variable var1), plus 1 word of
record information preceding the data in record 2.

Ch2 Sec4.1.3. Fortran binary files, variables on different grids.

Some FORTRAN-structured files have multiple variables per record which do not share a
common grid. An example would be one year of a global monthly field stored as twelve
records like this:

rrrr year month field(360x180) rrrr

The data file size is (1+1+1+360*180+1)*12*4 = 3110592 bytes. Such a file cannot be read
with the /FORMAT=unf qualifier but can be read with the /FORMAT=stream qualifier
described in the next section. By including the /SWAP qualifier, this technique can be used
to read files created on a machine with a different byte ordering.

The following commands will read this file and assign the data to the appropriate grid:

yes? ! Create an X axis for an entire record.
yes? DEFINE AXIS/X=1:`3+360*180+1`:1 binary_x
yes? DEFINE AXIS/T=1:12:1 binary_t
yes? DEFINE GRID/X=binary_x/T=binary_t binary_g

yes? ! Read in everything.

yes? FILE/FORMAT=stream/G=binary_g/VAR=val binary_file

! Create the grid for the data field.
yes? DEFINE AXIS/MODULO/X=0.5:359.5:1 1deg_x
yes? DEFINE AXIS/Y=-89.5:89.5:1 1deg_y
yes? DEFINE AXIS/T=15-jan-1999:15-dec-1999:1/UNITS=month month_1999_t
yes? DEFINE GRID/X=1deg_x/Y=1deg_y/T=month_1999_t 1deg_1999_g

yes? ! Create a variable that uses this grid.
yes? LET dummy = x[GX=R_1deg_1999_g] + y[GY=R_1deg_1999_g] +
 t[GT=R_1deg_1999_g]

yes? ! Reshape the data portion of val onto the data grid.
yes? LET field = RESHAPE(val[i=4:`3+360*180`],dummy)

Ch2 Sec4.2. Stream binary files

Files without embedded record length information are created by FORTRAN programs
using ACCESS="DIRECT" in OPEN statements and by C programs using the C studio
library. These files can contain a mix of integer and real numbers. The following types can
be read from an unstructured file:

FORTRAN C Size in bytes

INTEGER*1 char 1

INTEGER*2 short 2

INTEGER*4 int 4

REAL*4 float 4

REAL*8 double 8

Ch2 Sec4.2.1. Simple stream files

Suppose "dddd" represents a 4-byte data value. Then a stream (or "direct access") binary
file of FORTRAN REAL*4 or C floats is:

dddd dddd dddd dddd dddd dddd ...

The structure of the records is implied by the program accessing the data. FORTRAN code
which generates a direct access binary file might look like this:

REAL*4 MYVAR(10,5)
...
C Use RECL=40 for machines that specify in bytes

OPEN(UNIT=20, FILE="myfile.dat", ACCESS="DIRECT", RECL=10)
...
DO 100 j = 1, 5
100 WRITE (20,REC=j) (MYVAR(i,j),i=1,10)
....

Use the following Ferret commands to read variable "myvar" from this file:

yes? DEFINE AXIS/X=1:10:1 x10
yes? DEFINE AXIS/Y=1:5:1 y5
yes? DEFINE GRID/X=x10/Y=y5 g10x5
yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream myfile.dat

If the file consisted of a set of FORTRAN REAL*8 or C doubles, then the data would look
like:

dddddddd dddddddd dddddddd ...

and the following Ferret commands would read the data into "myvar":

yes? DEFINE AXIS/X=1:10:1 x10

yes? DEFINE AXIS/Y=1:5:1 y5

yes? DEFINE GRID/X=x10/Y=y5 g10x5

yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream/type=r8 myfile.dat

Note the addition of the "type" qualifier. See the FILE command (p. 330) for more details.

Since Ferret represents all variables as REAL*4, some precision is lost when reading in
REAL*8 or INTEGER*4 values. Also, some REAL*8 numbers cannot be represented as
REAL*4 numbers; the internal Ferret value of such a number is system dependent.

Ch2 Sec4.2.2. Mixed stream files

Ferret can read binary files that contain a mix of numbers of different type. However, a
given Ferret variable can only be one type. Say you have a file containing a mix of REAL*8
and REAL*4 numbers:

dddddddd dddd dddddddd dddd dddddddd ...

The following would successfully read the file:

yes? FILE/VAR=MYDOUBLE,MYFLOAT/GRID=somegrid/FORMAT=stream/type=r8,r4
 myfile.dat

while:

yes? FILE/VAR=MYDOUBLE/GRID=someothergrid/FORMAT=stream/type=r8,r4
 myfile.dat

would fail.

Ch2 Sec4.2.3. Byte-swapped stream files

Stream files with byte-swapped numbers can be read with the /SWAP qualifier. Note that
the /ORDER and /SKIP qualifiers are also available (see chapter "Data Set Basics", section
"Reading ASCII files," p. 45, for more details on /ORDER and /SKIP).

Ch2 Sec5. ASCII DATA

To access ASCII data file sets use

yes? SET DATA/EZ ASCII_file_name or equivalently
yes? FILE ASCII_file_name

The following are qualifiers to SET DATA/EZ or FILE:

Qualifier Description

Use command SET VARIABLE to individually customize the variables.

Ch2 Sec5.1. Reading ASCII files

Below are several examples of reading ASCII data properly. (Uniform record length,
FORTRAN-structured binary data are read similarly with the addition of the qualifier
/FORMAT= "unf". Seethe chapter on "Data Set Basics", section "Binary Data," p. 40, for
other binary types). First, we look briefly at the relationship between Ferret and standard
matrix notation.

Linear algebra uses established conventions in matrix notation. In a matrix A(i,j), the first
index denotes a (horizontal) row and the second denotes a (vertical) column.

A11 A12 A13 ... A1n

A21 A22 A23 ... A2n Matrix A(i,j)

...

Am1 Am2 Am3 ... Amn

X-Y graphs follow established conventions as well, which are that X is the horizontal axis

(and in a geographical context, the longitude axis) and increases to the right, and Y is the
vertical axis (latitude) and increases upward (Ferret provides the /DEPTH qualifier to
explicitly designate axes where the vertical axis convention is reversed).

In Ferret, the first index of a matrix, i, is associated with the first index of an (x,y) pair, x.
Likewise, j corresponds to y. Element Am2, for example, corresponds graphically to x=m
 and y=2.

By default, Ferret stores data in the same manner as FORTRAN—the first index varies
fastest. Use the qualifier /ORDER to alter this behavior. The following examples
demonstrate how Ferret handles matrices.

Example 1—1 variable, 1 dimension

1a) Consider a data set containing the height of a plant at regular time intervals, listed in a
single column:

2.3
3.1
4.5
5.6
. . .

To access, name, and plot this variable properly, use the commands

yes? FILE/VAR=height plant.dat
yes? PLOT height

1b) Now consider the same data, except listed in four columns:

2.3 3.1 4.5 5.6
5.7 5.9 6.1 7.2
. . .

Because there are more values per record (4) than variables (1), use:

yes? FILE/VAR=height/COLUMNS=4 plant4.dat
yes? PLOT height

Example 2—1 variable, 1 dimension, with a large number of data points.

The simple FILE command:

yes? FILE/VAR=height plant.dat

uses an abstract axis of fixed length, 20480 points. If your data is larger than that, you can
read the data by defining an axis of appropriate length. Set the length to a number equal to
or larger than the dimension of your data. The plot command will plot the actual number of
points in the file.

yes? DEFINE AXIS/X/X=1:50000:1 longax

yes? DEFINE GRID/X=longax biggrid

yes? FILE/VAR=height/GRID=biggrid plant.dat
yes? PLOT height

Example 3—2 variables, 1 dimension

3a) Consider a data set containing the height of a plant and the amount of water given to the
plant, measured at regular time intervals:

2.3 20.4
3.1 31.2
4.5 15.7
5.6 17.3
. . .

To read and plot this data use

yes? FILE/VAR="height,water" plant_wat.dat
yes? PLOT height,water

3b) The number of columns need be specified only if the number of columns exceeds the
number of variables. If the data are in six columns

2.3 20.4 3.1 31.2 4.5 15.7
5.6 17.3 ...

use

yes? FILE/VAR="height,water"/COLUMNS=6 plant_wat6.dat
yes? PLOT height,water

Example 4—1 variable, 2 dimensions

4a) Consider a different situation: a greenhouse with three rows of four plants and a file
with a single column of data representing the height of each plant at a single time
(successive values represent plants in a row of the greenhouse):

3.1
2.6
5.4
4.6
3.5
6.1
. . .

If we want to produce a contour plot of height as a function of position in the greenhouse,
axes will have to be defined:

yes? DEFINE AXIS/X=1:4:1 xplants
yes? DEFINE AXIS/Y=1:3:1 yplants
yes? DEFINE GRID/X=xplants/Y=yplants gplants
yes? FILE/VAR=height/GRID=gplants greenhouse_plants.dat
yes? CONTOUR height

When reading data the first index, x, varies fastest. Schematically, the data will be assigned
as follows:

 x=1 x=2 x=3 x=4
y=1 3.1 2.6 5.4 4.6
y=2 3.5 6.1 . . .
y=3 . . .

4b) If the file in the above example has, instead, 4 values per record:

3.1 2.6 5.4 4.6
3.5 6.1 . . .

then add /COLUMNS=4 to the FILE command:

yes? FILE/VAR=height/COLUMNS=4/GRID=gplants greenhouse_plants.dat

Example 5—2 variables, 2 dimensions

Like Example 3, consider a greenhouse with three rows of four plants each and a data set
with the height of each plant and the length of its longest leaf:

3.1 0.54
2.6 0.37
5.4 0.66
4.6 0.71
3.5 0.14
6.1 0.95
. .
. .

Again, axes and a grid must be defined:

yes? DEFINE AXIS/X=1:4:1 xht_leaf
yes? DEFINE AXIS/Y=1:3:1 Yht_leaf
yes? DEFINE GRID/X=xht_leaf/Y=yht_leaf ght_leaf
yes? FILE/VAR="height,leaf"/GRID=ght_leaf greenhouse_ht_lf.dat
yes? SHADE height
yes? CONTOUR/OVER leaf

The above commands create a color-shaded plot of height in the greenhouse, and overlay a
contour plot of leaf length. Schematically, the data will be assigned as follows:

 x=1 x=2 x=3 x=4
 ht , lf ht , lf
y=1 3.1, 0.54 2.6, 0.37 5.4, 0.66 4.6, 0.71
y=2 3.5, 0.14 6.1, 0.95 . . .
y=3 . . .

Example 6—2 variables, 3 dimensions (time series)

Consider the same greenhouse with height and leaf length data taken at twelve different
times. The following commands will create a three-dimensional grid and a plot of the height
and leaf length versus time for a specific plant.

yes? DEFINE AXIS/X=1:4:1 xplnt_tm
yes? DEFINE AXIS/Y=1:3:1 yplnt_tm
yes? DEFINE AXIS/T=1:12:1 tplnt_tm
yes? DEFINE GRID/X=xplnt_tm/Y=yplnt_tm/T=tplnt_tm gplant2
yes? FILE/VAR="height,leaf"/GRID=gplant2 green_time.dat
yes? PLOT/X=3/Y=2 height, leaf

Example 7—1 variable, 3 dimensions, permuted order (vertical profile)

Consider a collection of oceanographic measurements made to a depth of 1000 meters.
Suppose that the data file contains only a single variable, salt. Each record contains a
vertical profile (11 values) of a particular x,y (long,lat) position. Supposing that successive
records are successive longitudes, the data file would look as follows (assume the
equivalencies are not in the file):

 z=0 z=10 z=20 . . .

x=30W,y=5S 35.89 35.90 35.93 35.97 36.02 36.05 35.96 35.40 35.13 34.89
34.72

x=29W,y=5S 35.89 35.91 35.94 35.97 36.01 36.04 35.94 35.39 35.13 34.90
34.72

 . . .

Use the qualifier /DEPTH= when defining the Z axis to indicate positive downward, and
/ORDER when setting the data set to properly read in the permuted data:

yes? DEFINE AXIS/X=30W:25W:1/UNIT=degrees salx
yes? DEFINE AXIS/Y=5S:5N:1/UNIT=degrees saly
yes? DEFINE AXIS/Z=0:1000:100/UNIT=meters/DEPTH salz
yes? DEFINE GRID/X=salx/Y=saly/Z=salz salgrid
yes? FILE/ORDER=zxy/GRID=salgrid/VAR=sal/COL=11 sal.dat

Ch2 Sec5.2. Reading "DELIMITED" data files

SET DATA/FORMAT=DELIMITED[/DELIMITERS=][/TYPE=][/VAR=] filename

For "delimited" files, such as output of spreadsheets, SET DATA/FORMAT=DELIMITED
initializes files of mixed numerical, string, and date fields. If the data types are not specified
the file is analyzed automatically to determine data types.

The alias COLUMNS stands for "SET DATA/FORMAT=DELIMITED". (See p.372 for the
full syntax.)

Example 1: Strings, latitudes, longitudes, and numeric data.

This file is delimited by commas. Some entries are null; they are indicated by two commas
with no space between. File delimited_read_1.dat contains:

 col1, col2 col3 col4 col5 col6 col7
 one ,, 1.1, 24S, 130E ,, 1e1
 two ,, 2.2, 24N, 130W, 2S
 three ,, 3.3, 24, 130, 3N, 3e-2

 five ,, 4.4, -24, -130, 91, -4e2
 extra line

If there is no /TYPE qualifier, the data type is automatically determined. If all entries in the
column match a data type they are assigned that type. First let's try the file as is, using
automatic analysis. Record 1 contains 5 column headings (text) so V1 through V5 are
analyzed as text variables.

yes? FILE/FORMAT=delim delimited_read_1.dat
yes? LIST v1,v2,v3,v4,v5,v6,v7,v8
 DATA SET: ./delimited_read_1.dat
 X: 0.5 to 7.5
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
 V1 V2 V3 V4 V5 V6 V7
1 / 1: "col1" "col2" "col3" "col4" "col5" " "
2 / 2: "one" " " "1.1" "24S" "130E" " " 10.0
3 / 3: "two" " " "2.2" "24N" "130W" "2S"
4 / 4: "three" " " "3.3" "24" "130" "3N" 0.0
5 / 5: " " " " " " " " " " " "
6 / 6: "five" " " "4.4" "-24" "-130" "91" -400.0
7 / 7: "extra line" " " " " " " " " " "

Now skip the first record to do a better "analysis" of the file fields. Explicitly name the
variables. Note that v3 is correctly analyzed as numeric, A4 is latitude and A5 longitude.
A6 is analyzed as string data, because the value 91 in record 5 does not fall in the range for
latitudes, and records 2 and 3 contain mixed numbers and letters.

yes? FILE/FORMAT=DELIM/SKIP=1/VAR="a1,a2,a3,a4,a5,a6,a7,a8,a9"
delimited_read_ 1.dat

yes? LIST a1,a2,a3,a4,a5,a6,a7
 DATA SET: ./delimited_read_1.dat
 X: 0.5 to 6.5
Column 1: A1
Column 2: A2 is A2 (all values missing)
Column 3: A3
Column 4: A4 is A4 (degrees_north)(Latitude)
Column 5: A5 is A5 (degrees_east)(Longitude)
Column 6: A6
Column 7: A7
 A1 A2 A3 A4 A5 A6 A7
1 / 1: "one" ... 1.100 -24.00 130.0 " " 10.0
2 / 2: "two" ... 2.200 24.00 -130.0 "2S"
3 / 3: "three" ... 3.300 24.00 130.0 "3N" 0.0
4 / 4: " " " "
5 / 5: "five" ... 4.400 -24.00 -130.0 "91" -400.0
6 / 6: "extra line"... " "

Now use the /TYPE qualifier to specify that all columns be treated as numeric.

yes? FILE/FORMAT=delim/SKIP=1/TYPE=numeric delimited_read_1.dat
yes? LIST v1,v2,v3,v4,v5,v6,v7,v8
 DATA SET: ./delimited_read_1.dat
 X: 0.5 to 6.5
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
 V1 V2 V3 V4 V5 V6 V7
1 / 1:...... 1.100 10.0
2 / 2:...... 2.200
3 / 3:...... 3.300 24.00 130.0 0.0
4 / 4:......
5 / 5:...... 4.400 -24.00 -130.0 91.00 -400.0
6 / 6:......

Here is how to read only the first line of the file. If the variables are not specified, 7
variables are generated because auto-analysis of file doesn't stop at the first record. Use the
command COLUMNS, the alias for FILE/FORMAT=delimited

yes? DEFINE AXIS/X=1:1:1 x1yes? DEFINE GRID/X=x1 g1
yes? COLUMNS/GRID=g1 delimited_read_1.dat
LIST v1,v2,v3,v4,v5,v6,v7
 DATA SET: ./delimited_read_1.dat

 X: 1
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
Column 7: V7
 V1 V2 V3 V4 V5 V6 V7
I / *: "col1" "col2" "col3" "col4" "col5" " " ... " "

Define the variables to read.

yes? COLUMNS/GRID=g1/VAR="c1,c2,c3,c4,c5" delimited_read_1.dat
yes? LIST c1,c2,c3,c4,c5
 DATA SET: ./delimited_read_1.dat
 X: 1
Column 1: C1
Column 2: C2
Column 3: C3
Column 4: C4
Column 5: C5
 C1 C2 C3 C4 C5
I / *: "col1" "col2" "col3" "col4" "col5"

Example 2: File using blank as a delimiter.

Ferret recognizes the file as containing date and time variables, further explored in Example
3 below. Here is the file delimited_read_2.dat. There is a record of many blanks in record
2.

 1981/12/03 12:35:00

 1895/2/6 13:45:05

Read the file using /DELIMITER=" "

yes? FILE/FORM=delimited/DELIMITER=" " delimited_read_2.dat
yes? LIST v1,v2
 DATA SET: ./delimited_read_2.dat
 X: 0.5 to 3.5
Column 1: V1 is V1 (days)(Julian days since 1-Jan-1900)
Column 2: V2 is V2 (hours)(Time of day)
 V1 V2
1 / 1: 37965. 12.58

2 / 2:
3 / 3: 39051. 13.75

Example 3: dates and times

Note that record 3 has syntax errors in the first 4 fields. Here is delimited_read_3.dat:

 12/1/99, 12:00, 12/1/99, 1999-03-01, 12:00, 13:45:36.5
 12/2/99, 01:00:13.5, 12/2/99, 1999-03-02, 01:00:13.5, 14:45:36.5
 12/3/99x, 2:00x, 12/3/99, 1999-03-03, 2:00, 15:45
 12/4/99, 03:00, 12/4/99, 1999-03-04, 03:00, 16:45:36.5

Read with auto-analysis. The records with syntax errors cause variables 1 and 2 to be read
as string variables.

yes? COLUMNS delimited_read_3.dat
yes? LIST v1,v2,v3,v4,v5,v6
 DATA SET: ./delimited_read_3.dat
 X: 0.5 to 4.5
Column 1: V1
Column 2: V2
Column 3: V3 is V3 (days)(Julian days since 1-Jan-1900)
Column 4: V4 is V4 (days)(Julian days since 1-Jan-1900)
Column 5: V5 is V5 (hours)(Time of day)
Column 6: V6 is V6 (hours)(Time of day)
 V1 V2 V3 V4 V5 V6
1 / 1: "12/1/99" "12:00" 36493. 36218. 12.00 13.76
2 / 2: "12/2/99" "01:00:13.5" 36494. 36219. 1.00 14.76
3 / 3: "12/3/99x" "2:00x" 36495. 36220. 2.00 15.75
4 / 4: "12/4/99" "03:00" 36496. 36221. 3.00 16.76

Use the date variables in v3 and v4 to define time axes. The date encodings are as
expected.

yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-1900 tax = v3
yes? SHOW AXIS tax
name axis # pts start end
TAX TIME 4 r 01-DEC-1999 00:00 04-DEC-1999
00:00

T0 = 1-JAN-1900

yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-1900 tax = v4
yes? SHOW AXIS tax
name axis # pts start end

TAX TIME 4 r 01-MAR-1999 00:00 04-MAR-1999
00:00
T0 = 1-JAN-1900

Next we'll specify each column's type. Only the first two characters of the type are needed.
Now we can read those columns which had errors, except for the record with the errors.

yes? COLUMNS/TYPE="da,ti,date, date, time, time" delimited_read_3.dat
yes? LIST v1,v2,v3,v4,v5,v6
 DATA SET: ./delimited_read_3.dat
 X: 0.5 to 4.5
Column 1: V1 is V1 (days)(Julian days since 1-Jan-1900)
Column 2: V2 is V2 (hours)(Time of day)
Column 3: V3 is V3 (days)(Julian days since 1-Jan-1900)
Column 4: V4 is V4 (days)(Julian days since 1-Jan-1900)
Column 5: V5 is V5 (hours)(Time of day)
Column 6: V6 is V6 (hours)(Time of day)
 V1 V2 V3 V4 V5 V6
1 / 1: 36493. 12.00 36493. 36218. 12.00 13.76
2 / 2: 36494. 1.00 36494. 36219. 1.00 14.76
3 / 3: 36495. 36220. 2.00 15.75
4 / 4: 36496. 3.00 36496. 36221. 3.00 16.76

Delimiters can be used to break up individual fields. Use both the slash and a comma
(indicated by backslash and comma \,)

FILE/FORM=delim/DELIM="/,\," delimited_read_3.dat
LIST V1,V2,V3,V4,v5,v6
 DATA SET: ./delimited_read_3.dat
 X: 0.5 to 4.5
Column 1: V1
Column 2: V2
Column 3: V3
Column 4: V4
Column 5: V5
Column 6: V6
 V1 V2 V3 V4 V5 V6
1 / 1: 12.00 1.000 "99" "12:00" 12.00 1.000
2 / 2: 12.00 2.000 "99" "01:00:13.5" 12.00 2.000
3 / 3: 12.00 3.000 "99x" "2:00x" 12.00 3.000
4 / 4: 12.00 4.000 "99" "03:00" 12.00 4.000

Ch2 Sec6. TRICKS TO READING BINARY AND ASCII FILES

Since binary and ASCII files are found in a bewildering variety of non-standardized formats
a few tricks may help with reading difficult cases.

● Sometimes variables are interleaved with data axes in unstructured (stream) binary
files. A simple trick is to read them all as a single variable, say, "Vall," in which the
sequence of variables in the file V1, V2, V3, ... is regarded as an axis of the grid.
Then extract the variables by defining V1 = Vall[I=1] (if the I axis was used, else
J=1, K=1, or L=1) as needed.

● In some ASCII files the variables are presented as blocks—a full grid of variable 1,
then a full grid of variable 2, etc. These files may be read using Unix soft links so
that the same file can be opened as several Ferret data sets. Then use the FILE
command to point separately to each soft link using the /SKIP qualifier to locate the
correct starting point in the file for each variable. For example,

Unix commands:

 ln -s my_data my_dat.v1
 ln -s my_data my_dat.v2
 ln -s my_data my_dat.v3

Ferret commands:

 yes? FILE/SKIP=0/VAR=v1 my_dat.v1
 yes? FILE/SKIP=100/VAR=v2 my_dat.v2
 yes? FILE/SKIP=200/VAR=v3 my_dat.v3

● If an ASCII file contains a repeating sequence of records try describing the entire
sequence using a single FORTRAN FORMAT statement. An example of such a
statement would be (3F8.4,2(/5F6.2)). The slash character and the nested parentheses
allow multi-record groups to appear as a single format. Note that the /COLUMNS
qualifier should reflect the total number of columns in the repeating group of
records.

● If an ASCII or binary file contains gridded data in which the order of axes is not X-Y-
Z-T read the data in (which results in the wrong axis ordering) and use the
LIST/ORDER= to permute the order on output. The resulting file will have the
desired axis ordering.

● If the times and geographical coordinate locations of the grid are inter-mixed with
the dependent variables in the file then 1) issue a FILE command to read the
coordinates only; 2) use DEFINE AXIS/FROM_DATA to define axes and DEFINE

GRID to define the grid; 3) use FILE/GRID=mygrid to read the file again.

Ch2 Sec7. ACCESS TO REMOTE DATA SETS WITH DODS

Ch2 Sec7.1. What is DODS?

DODS is now called OPenDAP; we continue to refer to it as DODS in this manual for now.
 DODS, the Distributed Oceanographic Data System, allows users to access data anywhere
from the Internet using a variety of client/server methods, including Ferret. Employing
technology similar to that used by the World Wide Web, DODS and Ferret create a
powerful tool for the retrieval, sampling, analyzing and displaying of datasets; regardless of
size or data format (though there are data format limitations).

For more information on DODS, please see the DODS home page at

 http://unidata.ucar.edu/packages/dods/

Similar to the WWW, DODS is an emerging technology and is under development. As a
result, it is likely that the details with which things are accomplished will be changing.

Ch2 Sec7.2. Accessing Remote Data Sets

Datasets are accessed through Ferret using their raw Universal Resource Locator (URL)
address. For example, to access the COADS climatology, hosted at PMEL:

yes? use "http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc"

Once the dataset has been initialized, it is used just like any other local dataset.

yes? list/x=140w/y=2n/t="16-Feb" sst
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 141W
 LATITUDE: 1N
 TIME: 15-FEB 16:29

http://unidata.ucar.edu/packages/dods/

 DATA SET: http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc
 26.39

To locate DODS data, you can search the NVODS /DODS List of DODS datasets at
http://www.unidata.ucar.edu/cgi-bin/dods/datasets/datasets.cgi?xmlfilename=datasets.xml
or the Global Change Master Directory at http://gcmd.gsfc.nasa.gov/

For the time being, NetCDF and HDF files can be read via DODS by Ferret. As DODS
(OPeNDAP) NetCDF libraries become available, other data types will be made available.

Ch2 Sec7.3. Debugging Access to Remote DODS Data Sets

To find out more information about a particular dataset, or to debug problems, there are
three elements of the dataset which may be accessed via a web browser. To access this
information, merely append a dds, das, or info to the dataset name. For example:

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.dds

DDS stands for Data Description Structure and this will return a text description of the data
sets structure.

http://www.ferret.noaa.gov/cgi-bin/nph-nc/data/coads_climatology.nc.das

DAS stands for Dataset Attribute Structure and this will return a text description of
attributes assigned to the variables in the data set.

http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc.info

This will return a text description of the variables in the dataset.

Ch2 Sec7.4. Security

http://www.unidata.ucar.edu/cgi-bin/dods/datasets/datasets.cgi?xmlfilename=datasets.xml
http://gcmd.gsfc.nasa.gov/

Some DODS data providers will choose to control access to some or all of their data. When
you request data from one of these servers, the DODS client will prompt you for a username
and password. If you want to avoid the prompt, you can embed a username and password in
it, like this:

http://user:password@www.dods.org/nph-dods/etc...

Ch2 Sec7.5. Sharing Data Sets via DODS

One of the most powerful aspect of DODS is the ease with which it allows for the sharing of
data. With just a few simple steps, anyone running a web server can also be a DODS data
server, thereby allowing data set access to anyone with an Internet connection.

Simply copying a few precompiled binaries into the cgi-bin directory of an already
configure httpd server is all it takes to become a DODS server. Once the server is
configured, adding or removing data sets is as simple as copying them to the server data
directory or deleting them from that directory.

This ability has such immense potential that it bears extra emphasis. Imagine that within
seconds of finishing a model run, a remote colleague is able to look at your dataset with
whatever DODS client he/she desires, be it Ferret, or Matlab, etc. No need for you to
package up the data or for your colleague to download and/or reformat it, it is ready to be
analyzed right away.

Ch2 Sec7.6. DODS caching

This feature allows caching of frequently accessed DODS served datasets to produce a
quicker response when requesting remote data. The first time you access a DODS data set,
a file in the users home directory will be created called .dodsrc. This file is the DODS
client initialization file. Please see the DODS Users Guide;
http://www.unidata.ucar.edu/packages/dods/user/guide-html/guide_72.html for details of
 the paramaters that this file contains.

Initially, DODS caching will be turned off. In order to turn caching on, change the line in
the newly created ~/.dodsrc file from

http://www.unidata.ucar.edu/packages/dods/user/guide-html/guide_72.html

 USE_CACHE=0
to
 USE_CACHE=1

The next time Ferret is run, and a DODS-served dataset is accessed, a file called
.dods_cache will be created, typically in the users home directory. The location of the
DODS cache directory can be controlled by the line

 CACHE_ROOT=/home/twaits/.dods_cache/

in the user's .dodsrc file. This directory is where all the cached information is stored. To
clear the DODS cache, simply delete the .dods_cache directory and all of it's contents (for
example, rm -rf ~/.dods_cache). This directory will be recreated and repopulated with
caching information the next time data is accessed via DODS, if caching is turned on. All of
the paramater values in the .dodsrc file can be modified to better suit individual needs, and
will be incorporated the next time Ferret is run and DODS served data is accessed. Again,
see the DODS User guide at see the section "The OPeNDAP Client Initialization File
(.dodsrc)" in the DODS Users Guide
(http://www.unidata.ucar.edu/packages/dods/user/guide-html) for more detailed
information

It is often a useful diagnostic exercise to turn caching off and/or clear out the cache
directory when attempts to access datasets in Ferret appear inconsistent. For example, if
Ferret attempted to access a DODS-served dataset that was unavailable because the DODS
server was down, that information may get cached and adversely effect the next attempt at
retrieving the data.

For more detailed information on using DODS, and on setting up a DODS server, see the
DODS home page (http://unidata.ucar.edu/packages/dods).

Ch2 Sec7.7. Proxy servers

A DODS client can negotiate proxy servers, with help from directions in its configuration
file. The parameters that control proxy behavior are fully documented in the DODS Users
Guide, see the link above.

http://www.unidata.ucar.edu/packages/dods/user/guide-html
http://unidata.ucar.edu/packages/dods

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 3: VARIABLES AND EXPRESSIONS

Ch3 Sec1. VARIABLES

Variables are of 2 kinds:

1) file variables (read from disk files)

2) user-defined variables (defined by the user with LET command)

Both types may be accessed identically in all commands and expressions.

Variables, regardless of kind, possess the following associated information:

 1) grid—the underlying coordinate structure
 2) units
 3) title
 4) title modifier (additional explanation of variable)
 5) flag value for missing data points

Use the commands SHOW DATA and SHOW VARIABLES to examine file variables and user-
defined variables, respectively.

The pseudo-variables I, J, K, L, X, Y, Z, T and others may be used to refer to the underlying grid
locations and characteristics and to create abstract variables.

For a description of string variables and arrays, see the chapter on "Handling String Data", p. 209.

Ch3 Sec1.1. Variable syntax

Variables in Ferret are referred to by names with optional qualifying information appended in
square brackets. See DEFINE VARIABLE (p. 322) for a discussion of legal variable names.

The information that may be included in the square brackets includes

D=data_set_name_or_number ! indicate the data set
G=grid_or_variable_name ! request a regridding
X=,Y=,Z=,T=,I=,J=,K=,L= ! specify region and transformation

 e.g. LIST V[x=1:50:5,l=1:30@ave]

See the chapter "Grids and Regions", section "Regions" (p. 146) for more discussion of the
syntax of region qualifiers and transformations.

Some examples of valid variable syntax are

Myvar ! data set and region as per current context
myvar[D=2] ! myvar from data set number 2 (see SHOW DATA)
myvar[D=a_dset] ! myvar from data set a_dset.cdf or a_dset.des
myvar[D=myfile.txt] ! myvar from file myfile.txt
myvar[G=gridname] ! myvar regridded to grid gridname
myvar[G=var2] ! myvar regridded to the grid of var2
 ! which is in the same data set as myvar
myvar[G=var2[D=2]] ! myvar regridded to the grid of var2
 ! which is in data set number 2
myvar[GX=axisname] ! myvar regridded to a dynamic grid which
 ! has X axis axisname
myvar[GX=var2] ! myvar regridded to a dynamic grid which
 ! has the X axis of variable var2
myvar[I=1:31:5] ! myvar subsampled at every 5th point
 ! (regridded to a subsampled axis)
myvar[X=20E:50E:5] ! myvar subsampled at every 5 degrees
 ! (regridded to a 5-deg axis by linear
 ! interpolation)

Ch3 Sec1.2. File variables

File variables are stored in disk files. Input data files can be ASCII, binary, NetCDF, or TMAP-
formatted (see the chapter "Data Set Basics", p. 33). File variables are made available with the
SET DATA (alias USE) command.

In some netCDF files the variable names are not consistent with Ferret's rules for variable naming.
They may be case-sensitive (for example, variables "v" and "V" defined in the same file), may be
restricted names such as the Ferret pseudo-variable names I, J, K, L, X, Y, Z, T, XBOX, YBOX,
ZBOX, or TBOX, or they may include "illegal" characters such as "+", "-", "%", blanks, etc. To
access such variable names in Ferret, simply enclose the name in single quotes. For example,

yes? PLOT 'x'

yes? CONTOUR 'SST from MP/RF measurements'

By the same token when using Ferret to output into netCDF files that Ferret did not itself create,

the results may not be entirely as expected. Case-sensitivity of names is one aspect of this. Since
Ferret is (by default) case insensitive and netCDF files are case-sensitive writing into a "foreign"
file may result in duplicated entities in the file which differ only in case.

Ch3 Sec1.3. Pseudo-variables

Pseudo-variables are variables whose values are coordinates or coordinate information from a grid.
Valid pseudo-variables are

A grid box is a concept needed for some transformations along an axis; it is the length along an
axis that belongs to a single grid point and functions as a weighting factor during integrations and
averaging transformations.

The pseudo-variables I, J, K, and L are subscripts; that is, they are a coordinate system for
referring to grid locations in which the points along an axis are regarded as integers from 1 to the
number of points on the axis. This is clear if you look at one of the sample data sets:

yes? USE levitus_climatology
yes? SHOW DATA
 1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des (default)
 Levitus annual climatology (1x1 degree)
 diagnostic variables: NOT available
 name title I J K L
 TEMP TEMPERATURE 1:360 1:180 1:20 ...
 ... on grid GLEVITR1 X=20E:20E(380) Y=90S:90N Z=0m:5000m
 SALT SALINITY 1:360 1:180 1:20 ...
 ... on grid GLEVITR1 X=20E:20E(380) Y=90S:90N Z=0m:5000m

We see that there are 20 points along the z-axis (1:20 under K), for example, and that the z-axis
coordinate values range from 0 meters to 5000 meters. Pseudo-variables depend only on the
underlying grid, and not on the variables (in this case, temperature and salt).

Examples: Pseudo-variables

 1) yes? LIST/I=1:10 I
 2) yes? LET xflux = u * xbox[G=u]

Ch3 Sec1.3.1. Grids and axes of pseudo-variables

The name of a pseudo-variable (p. 60), alone, ("I", "T", "ZBOX", etc.) is not sufficient to
determine the underlying axis of the pseudo-variable. The underlying axis may be specified
explicitly, may be inherited from other variables used in the same expression, may be generated
dynamically, or may be inherited from the current default grid. The following examples illustrate
the possibilities:

TEMP + Y ! pseudo-variable Y inherits the y axis of variable TEMP

Y[G=TEMP] ! explicit: Y refers to the y axis of variable TEMP

Y[GY=axis_name] ! explicit: Y refers to axis axis_name

Y[Y=0:90:2] ! y axis is dynamically generated (See "dynamic axes">,
 ! p. 132)

In the expression

LET A = X + Y

in which the definition provides no explicit coaching, nor are there other variables from which Y
can inherit an axis, the axis of Y will be inherited from the current default grid. The current default
grid is specified by the SET GRID command and may be queried at any time with the SHOW
GRID command. SHOW GRID will respond with "Default grid for DEFINE VARIABLE is
grid".

Note that when pseudo-variables are buried within a user variable definition they do not inherit
from variables used in conjunction with the user variable. For example, contrast these expressions
involving pseudo-variable Y

USE coads_climatology ! has variable SST

LET A = Y ! Y buried inside variable A (axis indeterminate)

LIST SST + A ! y axis inherited from current default grid

LIST SST + Y ! y axis inherited from grid of SST

LIST SST + A[G=SST] ! y axis inherited from grid of SST

Ch3 Sec1.4. User-defined variables

New variables can be defined from existing variables and from abstract mathematical quantities
(such as COS(latitude)) with command DEFINE VARIABLE (alias LET). The section later in this
chapter, Defining New Variable (p. 125) expands on this capability.

See command DEFINE VARIABLE (p. 322) and command LET (p. 337) in the Commands
Reference. Example 3 shows the use of masking, a useful concept in constructing variables.

Examples: User-defined variables

1) yes? LET/TITLE="Surface Relief x1000 (meters)" r1000=rose/1000
2) yes? LET/TITLE="Temperature Deviation" tdev=temp - temp[Z=@ave]

3) yes? LET a = IF (sst GT 20. AND sst LT 30.) THEN sst ELSE 20.

Ch3 Sec1.5. Abstract variables

Ferret can be used to manipulate abstract mathematical quantities such as SIN(x) or
 EXP(k*t)—quantities that are independent of file variable values. Such quantities are referred to
as abstract expressions.

Example: Abstract variables

Contour the function

COS(a*Y)/EXP(b*T) where a=0.25 and b=-0.02

over the range

Y=0:45 (degrees) and T=1:100 (hours)

with a resolution of

 0.5 degree on the Y axis and 2 hours on the T axis.

Quick and dirty solution:

yes? CONTOUR COS(0.25*Y[Y=0:45:0.5])/EXP(-0.2*T[T=1:100:2])

Nicer (Figure 3_1); plot is documented with correct units and titles):

yes? DEFINE AXIS/Y=0:45:0.5/UNIT=DEGREES yax
yes? DEFINE AXIS/T=1:100:2/UNIT=HOURS tax
yes? DEFINE GRID/T=tax/Y=yax my_grid
yes? SET GRID my_grid
yes? LET a=0.25
yes? LET b=-0.02
yes? CONTOUR COS(a*Y)/EXP(b*T)

See the chapter "Grids and Regions", section "Grids" (p. 129), for more information on grids.

Ch3 Sec1.6. Missing value flags

Data values that are absent or undefined for mathematical reasons (e.g., 1/0) will be represented in
Ferret with a missing value flag. In SHADE outputs a missing value flag embedded at some point
in a variable will result in a transparent rectangular hole equal to the size of the grid cell of the
missing value. In a CONTOUR or FILL plot it will result in a larger hole—extending past the grid
box edge to the coordinate location of the next adjacent non-missing point—since contour lines
cannot be interpolated between a missing value and its neighboring points. In the output of the
LIST command for cases where the /FORMAT qualifier is not used the missing value will be
represented by 4 dots ("...."). For cases where LIST/FORMAT=FORTRAN-format is used the
numerical value of the missing value flag will be printed using the format provided.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig01.gif

Ch3 Sec1.6.1. Missing values in input files

Ferret does not impose a standard for missing value flags in input data sets; each variable in each
data set may have its own distinct missing value flag(s). The flag(s) actually in use by a data set
may be viewed with the SHOW DATA/VARIABLES command. If no missing value flag is
specified for a data set Ferret will assume a default value of –1.E+34.

For EZ input data sets, either binary or ASCII, the missing data flag may be specified with the SET
VARIABLE/BAD= command. A different value may be specified for each variable in the data
set.

For NetCDF input data sets the missing value flag(s) is indicated by the values of the attributes
"missing_value" and "_FillValue." If both attributes are defined to have different values both will
be recognized and used by Ferret as missing value indicators, however the occurrences of
_FillValue will be replaced with the value of missing_value as the data are read into Ferret's
memory cache so that only a single missing value flag is apparent inside of Ferret. The command
SET VARIABLE/BAD= can also be applied to NetCDF variables, thereby temporarily setting a
user-imposed value for _FillValue. If there are values of NaN in the file, then NaN must be listed
in either the as either the "missing_value" OR "_FillValue" attribute and then NaN is the missing
value. Or, the user may specify SET VARIABLE/BAD=NAN (case insensitive) to designate the
Fortran value NaN (not a number) as the bad value flag for a given variable in a netCDF dataset.

Ch3 Sec1.6.2. Missing values in user-defined variables

User-defined variables may in general be defined as expressions involving multiple variables. The
component variables need not in general agree in their choice of missing value flags. The result
variable will inherit the bad value flag of the first variable in the expression. If the first component
in the expression is a constant or a pseudo-variable, then Ferret imposes its default missing value
flag of –1.E+34.

The function MISSING(variable,replacement) provides a limited control over the choice of
missing values in user-defined variables. Note, however, that while the MISSING function will
replace the missing values with other values it will not change the missing value flag. In other
words, the replacement values will no longer be regarded as missing.

Ch3 Sec1.6.3. Missingvalues in output NetCDF files

Values flagged as missing inside Ferret will be faithfully transferred to output files—no
substitution will occur as the data are written. In the case of NetCDF output files both of the
attributes missing_value, and _FillValue will be set equal to the missing value flag.

Under some circumstances it is desirable to save a user-defined variable in a NetCDF file and then
to redefine that variable and to append further output. (An example of this is the process of
consolidating several files of input, say, moored measurements, into a gridded output.) The process
of appending will not change any of the NetCDF attributes—neither long_name (title), units, nor
missing_value or _FillValue. If the subsequent variable definitions do not agree in their choice of
missing value flags the resulting output may contain multiple missing value flags that will not be
properly documented.

An easy "trick" that avoids this situation is to begin all of the variable definitions with an addition
of zero, "LET var = 0 +" The addition of zero will not affect the value of the output but it will
guarantee that a missing value flag of –1.E+34 will be consistently used. Of course, you will want
to use the SET VARIABLE/TITLE= command in conjunction with this approach.

Ch3 Sec1.6.4. Displaying the missing value flag

If the LIST command is used, missing values are, by default, displayed as "...." To examine the
flag as a numerical value, use LIST/FORMAT=(E) (or some other suitable format).

Ch3 Sec1.7. Returning properties of variables

The keyword RETURN= can reveal the size and shape, title, bad flag, units, and other properties
of a variable or expression. See p. 120 for a description of this useful construct.

Ch3 Sec2. EXPRESSIONS

Throughout this manual, Ferret commands that require and manipulate data are informally called
"action" commands. These commands are:

 PLOT
 CONTOUR
 FILL (alias for CONTOUR/FILL)
 SHADE

 VECTOR
 POLYGON
 WIRE
 LIST
 STAT
 LOAD

Action commands may use any valid algebraic expression involving constants, operators
(+,–,*,...), functions (SIN, MIN, INT,...), pseudo-variables (X, TBOX, ...) and other variables.

A variable name may optionally be followed by square brackets containing region, transformation,
data set, and regridding qualifiers. For example, "temp", "salt[D=2]", "u[G=temp"],
"u[Z=0:200@AVE]", "v[k=1:50:5]

The expressions may also contain a syntax of:

 IF condition THEN expression_1 ELSE expression_2

Examples: Expressions

i) temp ^ 2
 temperature squared

ii) temp - temp[Z=@AVE]
for the range of Z in the current context, the temperature deviations from the vertical average

iii) COS(Y)
the cosine of the Y coordinate of the underlying grid (by default, the y-axis is implied by the other
variables in the expression)

iv) IF (vwnd GT vwnd[D=monthly_navy_winds]) THEN vwnd ELSE 0
use the meridional velocity from the current data set wherever it exceeds the value in data set
monthly_navy_winds, zero elsewhere.

Ch3 Sec2.1. Operators

Valid operators are

 +
 –
 *

 /
 ^ (exponentiate)
 AND
 OR
 GT
 GE
 LT
 LE
 EQ
 NE

For instance the exponentiate operator can compute the square root of a variable as var^0.5

Ch3 Sec2.2. Multi-dimensional expressions

Operators and functions (discussed in the next section, Functions) may combine variables of like
dimensions or differing dimensions.

If the variables are of like dimension then the result of the combination is of the same
dimensionality as inputs. For example, suppose there are two time series that have data on the
same time axis; the result of a combination will be a time series on the same time axis.

If the variables are of unlike dimensionality, then the following rules apply:

1) To combine variables together in an expression they must be "conformable" along each axis.

2) Two variables are conformable along an axis if the number of points along the axis is the
same, or if one of the variables has only a single point along the axis (or, equivalently, is normal to
the axis).

3) When a variable of size 1 (a single point) is combined with a variable of larger size, the
variable of size 1 is "promoted" by replicating its value to the size of the other variable.

4) If variables are the same size but have different coordinates, they are conformable, but Ferret
will issue a message that the coordinates on the axis are ambiguous. The result of the combination
inherits the coordinates of the FIRST variable encountered that has more than a single point on the
axis.

Examples:

Assume a region J=50/K=1/L=1 for examples 1 and 2. Further assume that variables v1 and v2
share the same x-axis.

1) yes? LET newv = v1[I=1:10] + v2[I=1:10] !same dimension
(10)

2) yes? LET newv = v1[I=1:10] + v2[I=5] !newv has length
of v1 (10)

3) We want to compare the salt values during the first half of the year with the values for the
second half. Salt_diff will be placed on the time coordinates of the first variable—L=1:6. Ferret
will issue a warning about ambiguous coordinates.

yes? LET salt_diff = salt[L=1:6] - salt[L=7:12]

4) In this example the variable zero will be promoted along each axis.

yes? LET zero = 0 * (i+j)
yes? LIST/I=1:5/J=1:5 zero !5X5 matrix of 0's

5) Here we calculate density; salt and temp are on the same grid. This expression is an XYZ
volume of points (100×100×10) of density at 10 depths based on temperature and salinity values at
the top layer (K=1).

yes? SET REGION/I=1:100/J=1:100
yes? LET dens = rho_un (salt[K=1], temp[K=1], Z[G=temp,K=1:10]

Ch3 Sec2.3. Functions

Functions are utilized with standard mathematical notation in Ferret. The arguments to functions
are constants, constant arrays, pseudo-variables, and variables, possibly with associated qualifiers
in square brackets, and expressions. Thus, all of these are valid function references:

● EXP(-1)
● MAX(a,b)
● TAN(a/b)
● SIN(Y[g=my_sst])
● DAYS1900(1989,{3,6,9},1)

A few functions also take strings as arguments. String arguments must be enclosed in double

quotes. For example, a function to write variable "u" into a file named "my_output.v5d", formatted
for the Vis5D program might be implemented as

● LOAD WRITE_VIS5D("my_output.v5d", a)

You can list function names and argument lists with:

yes? SHOW FUNCTIONS ! List all functions

Yes? SHOW FUNCTIONS *TAN ! List all functions containing string

Valid functions are described in the sections below. They are:

MAX ATAN XSEQUENCE SAMPLEXY

MIN ATAN2 YSEQUENCE SCAT2GRIDGAUSS_XY

 INT MOD ZSEQUENCE SCAT2GRIDGAUSS_XZ

ABS DAYS1900 TSEQUENCE SCAT2GRIDGAUSS_YZ

EXP MISSING FFTA SCAT2GRIDLAPLACE_XY

LN IGNORE0 FFTP SCAT2GRIDLAPLACE_XZ

LOG RANDU SAMPLEI SCAT2GRIDLAPLACE_YZ

SIN RANDN SAMPLEJ SORTI

COS RHO_UN SAMPLEK SORTJ

TAN THETA_FO SAMPLEL SORTK

ASIN RESHAPE SAMPLEIJ SORTL

ACOS ZAXREPLACE SAMPLET_DATE TAUTO_COR

Grid-changing functions

It is generally advisable to include explicit limits when working with functions that replace axes.
 For example, consider the function SORTL(v). The expression

LIST/L=6:10 SORTL(v)

is not equivalent to

LIST SORTL(v[L=6:10])

The former will list the 6th through 10th sorted indices from the entire l range of variable v. The
latter will list all of the indices that result from sorting v[l=6:10].

These functions in Ferret, including XSEQUENCE, SAMPLXY, and so on, are "grid-changing"
functions. This means that the axes of the result may differ from the axes of the arguments. In the
case of XSEQUENCE(sst), for example, the input grid for SST is

 lon
 lat
 normal
 time

whereas the output grid is

 abstract
 normal
 normal
 normal

so all axes of the input are replaced.

Grid-changing functions create a potential ambiguity about region specifications. Suppose that the
result of XSEQUENCE(sst[L=1]) is a list of 50 points along the ABSTRACT X axis. Then it is
natural that

LIST/I=10:20 XSEQUENCE(sst[L=1])

should give elements 10 through 20 taken from that list of 50 points (and it does.) However, one
might think that "I=10:20" referred to a subset of the longitude axis of SST. Therein lies the
ambiguity: one region was specified, but there are 2 axes to which the region might apply.

It gets a degree more complicated if the grid-changing function takes more than one argument.
Since the input arguments need not be on identical grids, a result axis (X,Y,Z, or T) may be
replaced with respect to one argument, but actually taken from another (consider ZAXREPLACE,

for example.) Ferret resolves the ambiguities thusly:

If in the result of a grid-changing function, an axis (X, Y, Z, or T) has been replaced relative to
some argument, then region information which applies to the result of the function on that axis will
NOT be passed to that argument.

So, when you issue commands like

SET REGION/X=20E:30E/Y=0N:20N/L=1
LIST XSEQUENCE(sst)

the X axis region ("20E:30E") applies to the result ABSTRACT axis -- it is not passed along to the
argument, SST. The Y axis region is, in fact, ignored altogether, since it is not relevant to the result
of XSEQUENCE, and is not passed along to the argument.

Ch3 Sec2.3.1. MAX

MAX(A, B) Compares two fields and selects the point by point maximum.
MAX(temp[K=1], temp[K=2]) returns the maximum temperature comparing the first
2 z-axis levels.

Ch3 Sec2.3.2. MIN

MIN(A, B) Compares two fields and selects the point by point minimum.
MIN(airt[L=10], airt[L=9]) gives the minimum air temperature comparing two
timesteps.

Ch3 Sec2.3.3. INT

INT (X) Truncates values to integers.
INT(salt) returns the integer portion of variable "salt" for all values in the current region.

Ch3 Sec2.3.4. ABS

ABS(X) absolute value.
ABS(U) takes the absolute value of U for all points within the current region

Ch3 Sec2.3.5. EXP

EXP(X) exponential ex; argument is real.
EXP(X) raises e to the power X for all points within the current region

Ch3 Sec2.3.6. LN

LN(X) Natural logarithm logeX; argument is real.
LN(X) takes the natural logarithm of X for all points within the current region

Ch3 Sec2.3.7. LOG

LOG(X) Common logarithm log10X; argument is real.
LOG(X) takes the common logarithm of X for all points within the current region

Ch3 Sec2.3.8. SIN

SIN(THETA) Trigonometric sine; argument is in radians and is treated modulo 2*pi.
SIN(X) computes the sine of X for all points within the current region.

Ch3 Sec2.3.9. COS

COS(THETA) Trigonometric cosine; argument is in radians and is treated modulo 2*pi.
COS(Y) computes the cosine of Y for all points within the current region

Ch3 Sec2.3.10. TAN

TAN(THETA) Trigonometric tangent; argument is in radians and is treated modulo 2*pi.
TAN(theta) computes the tangent of theta for all points within the current region

Ch3 Sec2.3.11. ASIN

ASIN(X) Trigonometric arcsine (-pi/2,pi/2) of X in radians.The result will be flagged as missing
if the absolute value of the argument is greater than 1; result is in radians.
ASIN(value) computes the arcsine of "value" for all points within the current region

Ch3 Sec2.3.12. ACOS

COS(X) Trigonometric arccosine (0,pi), in radians. The result will be flagged as missing of the
absolute value of the argument greater than 1; result is in radians.
ACOS (value) computes the arccosine of "value" for all points within the current region

Ch3 Sec2.3.13. ATAN

ATAN(X) Trigonometric arctangent (-pi/2,pi/2); result is in radians.
ATAN(value) computes the arctangent of "value" for all points within the current region

Ch3 Sec2.3.14. ATAN2

ATAN2(X,Y) 2-argument trigonometric arctangent of X/Y (-pi,pi); discontinuous at Y=0.
ATAN2(X,Y) computes the 2-argument arctangent of X/Y for all points within the current
region

Ch3 Sec2.3.15. MOD

MOD(A,B) Modulo operation (arg1 – arg2*[arg1/arg2]). Returns the remainder when the first
argument is divided by the second.
MOD(X,2) computes the remainder of X/2 for all points within the current region

Ch3 Sec2.3.16. DAYS1900

DAYS1900(year,month,day) computes the number of days since 1 Jan 1900. This function is
useful in converting dates to Julian days on the standard Gregorian calendar. If the year is prior to
1900 a negative number is returned. This means that it is possible to compute Julian days relative
to, say, 1800 with the expression
LET jday1800 = DAYS1900 (year, month, day) - DAYS1900(1800,1,1)

Ch3 Sec2.3.17. MISSING

MISSING(A,B) Replaces missing values in the first argument (multi-dimensional variable) with
the second argument; the second argument may be any conformable variable.
MISSING(temp, -999) replaces missing values in temp with –999
MISSING(sst, temp[D=coads_climatology]) replaces missing sst values with
temperature from the COADS climatology

Ch3 Sec2.3.18. IGNORE0

IGNORE0(VAR) Replaces zeros in a variable with the missing value flag for that variable.
IGNORE0(salt) replaces zeros in salt with the missing value flag

Ch3 Sec2.3.19. RANDU

RANDU(A) Generates a grid of uniformly distributed [0,1] pseudo-random values. The first valid
value in the field is used as the random number seed. Values that are flagged as bad remain flagged
as bad in the random number field.
RANDU(temp[I=105:135,K=1:5]) generates a field of uniformly distributed random
values of the same size and shape as the field "temp[I=105:135,K=1:5]" using temp[I=105,k=1] as
the pseudo-random number seed.

Ch3 Sec2.3.20. RANDN

RANDN(A) Generates a grid of normally distributed pseudo-random values. As above, but
normally distributed rather than uniformly distributed.

Ch3 Sec2.3.21. RHO_UN

RHO_UN(SALT, TEMP, P) Calculates the mass density rho (kg/m^3) of seawater from
salinity SALT(salt, psu), temperature TEMP(deg C) and pressure P(dbar) using the 1980
UNESCO International Equation of State (IES80). Either in-situ or potential density may be
computed depending upon whether the user supplies in-situ or potential temperature.

Note that to maintain accuracy, temperature must be converted to the IPTS-68 standard before
applying these algorithms. For typical seawater values, the IPTS-68 and ITS-90 temperature scales
are related by T_68 = 1.00024 T_90 (P. M. Saunders, 1990, WOCE Newsletter 10). The routine
uses the high pressure equation of state from Millero et al. (1980) and the one-atmosphere equation
of state from Millero and Poisson (1981) as reported in Gill (1982). The notation follows Millero
et al. (1980) and Millero and Poisson (1981).

RHO_UN(salt, temp, Z)

Ch3 Sec2.3.22. THETA_FO

THETA_FO(SALT, TEMP, Z, REF) Calculates the potential temperature of a seawater parcel
at a given salinity SALT(psu), temperature TEMP(deg. C) and pressure P(dbar), moved
adiabatically to a reference pressure REF(dbar).

This calculation uses Bryden (1973) polynomial for adiabatic lapse rate and Runge-Kutta 4th order
integration algorithm. References: Bryden, H., 1973, Deep-Sea Res., 20, 401–408; Fofonoff, N.M,
1977, Deep-Sea Res., 24, 489–491.

THETA_FO(salt, temp, Z, Z_reference)

Ch3 Sec2.3.23. RESHAPE

RESHAPE(A, B) The result of the RESHAPE function will be argument A "wrapped" on the grid
of argument B. The limits given on argument 2 are used to specify subregions within the grid into
which values should be reshaped.

RESHAPE(Tseries,MonthYear)

 Two common uses of this function are to view multi-year time series data as a 2-dimensional field
of 12-months vs. year and to map ABSTRACT axes onto real world coordinates. An example of
the former is

DEFINE AXIS/t=15-JAN-1982:15-DEC-1985/NPOINTS=48/UNITS=DAYS tcal
LET my_time_series = SIN(T[gt=tcal]/100)

! reshape 48 months into a 12 months by 4 year matrix

DEFINE AXIS/t=1982:1986:1 tyear
DEFINE AXIS/Z=1:12:1 zmonth
LET out_grid = Z[GZ=zmonth]+T[GT=tyear]
LET my_reshaped = RESHAPE(my_time_series, out_grid)
SHOW GRID my_reshaped
 GRID (G001)
name axis # pts start end
normal X
normal Y
ZMONTH Z 12 r 1 12
TYEAR T 5 r 1982 1986

For any axis X,Y,Z, or T if the axis differs between the input output grids, then limits placed upon
the region of the axis in argument two (the output grid) can be used to restrict the geometry into
which the RESHAPE is performed. Continuing with the preceding example:

! Now restrict the output region to obtain a 6 month by 8 year matrix

LIST RESHAPE(my_time_series,out_grid[k=1:6])
 RESHAPE(MY_TIME_SERIES,OUT_GRID[K=1:6])
 1 2 3 4 5 6
 1 2 3 4 5 6
1982 / 1: 0.5144 0.7477 0.9123 0.9931 0.9827 0.8820
1983 / 2: 0.7003 0.4542 0.1665 -0.1366 -0.4271 -0.6783
1984 / 3: -0.8673 -0.9766 -0.9962 -0.9243 -0.7674 -0.5401
1985 / 4: -0.2632 0.0380 0.3356 0.6024 0.8138 0.9505
1986 / 5: 0.9999 0.9575 0.8270 0.6207 0.3573 0.0610

For any axis X,Y,Z, or T if the axis is the same in the input and output grids then the region from
argument 1 will be preserved in the output. This implies that when the above technique is used on
multi-dimensional input, only the axes which differ between the input and output grids are affected
by the RESHAPE operation. However RESHAPE can only be applied if the reshape operation
preserves the ordering of data on the axes in four dimensions. The RESHAPE function only
"wraps" the variable to the new grid, keeping the data ordered as it exists in memory, that is,
ordered by X (varying fastest) then -Y-Z-T (slowest index). It is an operation like @ASN

regridding. Subsetting is done if requested by region specifiers, but the function does not reorder
the data as it is put on the new axes. For instance, if your data is in Z and T:

SHOW GRID G001
 GRID (G001)
name axis # pts start end
normal X
normal Y
ZMONTH Z 12 r 1 12
T_ABSTR T 5 r 1 5

and you wish to put it on a new grid, GRIDYZ

SHOW GRID gridyz
 GRID (GRIDYZ)
name axis # pts start end
normal X
YAX LATITUDE 5 r 15N 19N

ZMONTH Z 12 r 1 12
normal T

then the RESHAPE function would NOT correctly wrap the data from G001 to GRIDYZ, because
the data is ordered with its Z coordinates changing faster than its T coordinates, and on output the
data would need to be reordered with the Y coordinates changing faster then the Z coordinates.

The following filled contour plot of longitude by year number illustrates the use of RESHAPE in
multiple dimensions by expanding on the previous example: (Figure 3_2)

! The year-by-year progression January winds for a longitudinal patch
! averaged from 5s to 5n across the eastern Pacific Ocean. Note that
! k=1 specifies January, since the Z axis is month

USE coads
LET out_grid = Z[GZ=zmonth]+T[GT=tyear]+X[GX=uwnd]+Y[GY=uwnd]
LET uwnd_mnth_ty = RESHAPE(uwnd, out_grid)
FILL uwnd_mnth_ty[X=130W:80W,Y=5S:5N@AVE,K=1]

In the second usage mentioned, to map ABSTRACT axes onto real world coordinates, suppose
xpts and ypts contain time series of length NT points representing longitude and latitude points
along an oceanographic ship track and the variable global_sst contains global sea surface
temperature data. Then the result of

LET sampled_sst = SAMPLEXY(global_sst, xpts, ypts)

will be a 1-dimensional grid: NT points along the XABSTRACT axis. The RESHAPE function
can be used to remap this data to the original time axis using RESHAPE(sampled_sst, xpts)

LET sampled_sst = SAMPLEXY(global_sst,\
 xpts[t=1-jan-1980:15-jan-1980],\
 ypts[t=1-jan-1980:15-jan-1980])

LIST RESHAPE(sampled_sst, xpts[t=1-jan-1980:15-jan-1980])

When the input and output grids share any of the same axes, then the specified sub-region along
those axes will be preserved in the RESHAPE operation. In the example
"RESHAPE(myTseries,myMonthYearGrid)" this means that if myTseries and myMonthYearGrid
were each multidimensional variables with the same latitude and longitude grids then

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig02.gif

RESHAPE(myTseries[X=130E:80W,Y=5S:5N],myMonthYearGrid)

would map onto the X=130E:80W,Y=5S:5N sub-region of the grid of myMonthYearGrid. When
the input and output axes differ the sub-region of the output that is utilized may be controlled by
inserting explicit limit qualifiers on the second argument

Ch3 Sec2.3.24. ZAXREPLACE

ZAXREPLACE(V,ZVALS,ZAX) Convert between alternative monotonic Zaxes, where the
mapping between the source and destination Z axes is a function of X,Y, and or T. The function
regrids between the Z axes using linear interpolation between values of V. See also the related
functions ZAXREPLACE_BIN (p. 450) and ZAXREPLACE_AVG (p. 450) which use binning
and averaging to interpolate the values.

Typical applications in the field of oceanography include converting from a Z axis of layer number
to a Z axis in units of depth (e.g., for sigma coordinate fields) and converting from a Z axes of
depth to one of density (for a stably stratified fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis, say, layer
number. The second argument, ZVALS, contains values in units of the desired destination Z axis
(ZAX) on the same Z axis as V — for example, depth values associated with each vertical layer.
The third argument, ZAX, is any variable defined on the destination Z axis, often
"Z[gz=zaxis_name]" is used.

The ZAXREPLACE function takes three arguments. The first argument, V, is the field of data
values, say temperature or salinity. This variable is available on what we will refer to as the
"source" Z-axis -- say in terms of layer number. The second argument, ZVALS, contains the
values of the desired destination Z axis defined on the source Z axis -- for example, it may contain
the depth values associated with each vertical layer. It should always share the Z axis from the first
argument. The third argument, ZAX, is defined on the destination Z axis. Only the Z axis of this
variable is relevant -- the values of the variable, itself, and its structure in X, Y, and T are ignored.
 Often "Z[gz=zaxis_name]" is used for the third argument.

Note:

ZAXREPLACE is a "grid-changing" function; its output grid is different from the input
arguments. Therefore it is best to use explicit limits on the arguments rather than a SET REGION
command. (See p. 69)

 For example:

Contour salt as a function of density:

yes? set dat levitus_climatology

! Define density sigma, then density axis axden
yes? let sigma=rho_un(salt,temp,0)-1000
yes? define axis/z=21:28:.05 axden

! Regrid to density
yes? let saltonsigma= ZAXREPLACE(salt, sigma, z[gz=axden])

! Make Pacific plot
yes? fill/y=0/x=120e:75w/vlimits=28:21:-1 saltonsigma

Note that one could regrid the variable in the third argument to the destination Z axis using
whichever of the regridding transformations that is best for the analysis, e.g. z[gz=axdens@AVE]

Ch3 Sec2.3.25. XSEQUENCE, YSEQUENCE, ZSEQUENCE,
TSEQUENCE

XSEQUENCE(A), YSEQUENCE(A), ZSEQUENCE(A), TSEQUENCE(A) Unravels the data
from the argument into a 1-dimensional line of data on an ABSTRACT axis.

Note:

This family of functions are "grid-changing" functions; the output grid is different from the input
arguments. Therefore it is best to use explicit limits on the argument rather than a SET REGION
command. (See p. 69)

Ch3 Sec2.3.26. FFTA

FFTA(A) Computes Fast Fourier Transform amplitude spectra, normalized by 1/N

Arguments: A Variable with regular time axis.

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in cyc/(time units
from A)

See the demonstration script ef_fft_demo.jnl for an example using this function. Also see the
external functions fft_re, fft_im, and fft_inverse for more options using FFT's

 FFTA returns a(j) in

 f(t) = Σ(j=1 to N/2)[α(j) cos(jωt + Φ(j))]

where [] means "integer part of", ω=2 pi/T is the fundamental frequency, and T=N*∆t is the time
span of the data input to FFTA. Φ is the phase (returned by FFTP, see next section)

The units of the returned time axis are "cycles/∆t" where ∆t is the time unit of the input axis. The
Nyquist frequency is yquist = 1./(2.*boxsize), and the frequency axis runs from freq1 = yquist/
float(nfreq) to freqn = yquist

Even and odd N's are allowed. N need not be a power of 2. FFTA and FFTP assume f(1)=f(N+1),
and the user gives the routines the first N pts.

Specifying the context of the input variable explicitly e.g.

LIST FFTA(A[l=1:58])

will prevent any confusion about the region. See the note in chapter 3 (p. 69)on the context of
variables passed to functions.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at www.netlib.org.
 For further discussion of the FFTPACK code, please see the document, Notes on FFTPACK - A
Package of Fast Fourier Transform Programs at
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

http://www.ferret.noaa.gov/Ferret/Demos/ef_fft_demo/ef_fft_demo.html
http://www.netlib.org/
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

Ch3 Sec2.3.27. FFTP

FFTP(A) Computes Fast Fourier Transform phase

Arguments: A Variable with regular time axis.

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in cyc/(time units
from A)

See the demonstration script ef_fft_demo.jnl for an example using this function.

FFTP returns Φ(j) in

 f(t) = Σ(j=1 to N/2)[α(j) cos(jωt + Φ(j))]

where [] means "integer part of", ω=2 pi/T is the fundamental frequency, and T=N*∆t is the time
span of the data input to FFTA.

The units of the returned time axis are "cycles/∆t" where ∆t is the time increment. The Nyquist
frequency is yquist = 1./(2.*boxsize), and the frequency axis runs from freq1 = yquist/ float(nfreq)
to freqn = yquist

Even and odd N's are allowed. Power of 2 not required. FFTA and FFTP assume f(1)=f(N+1),
and the user gives the routines the first N pts.

Specifying the context of the input variable explicitly e.g.

LIST FFTA(A[l=1:58])

will prevent any confusion about the region. See the note in chapter 3 (p. 69)on the context of
variables passed to functions.

http://www.ferret.noaa.gov/Ferret/Demos/ef_fft_demo/ef_fft_demo.html

The code is based on the FFT routines in Swarztrauber's FFTPACK available at www.netlib.org.
 See the section on FFTA for more discussion (p. 78). For further discussion of the FFTPACK
code, please see the document, Notes on FFTPACK - A Package of Fast Fourier Transform
Programs at
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

Ch3 Sec2.3.28. SAMPLEI

SAMPLEI(TO_BE_SAMPLED,X_INDICES) samples a field at a list of X indices, which are a
subset of its X axis

Arguments: TO_BE_SAMPLED Data to sample

 X_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X ABSTRACT; length same as X_INDICES

 Y Inherited from TO_BE_SAMPLED

 Z Inherited from TO_BE_SAMPLED

 T Inherited from TO_BE_SAMPLED

See the demonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes (see p. 69), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call, e.g.

yes? LET sampled_data = samplei(airt[X=160E:180E], xindices)

Ch3 Sec2.3.29. SAMPLEJ

SAMPLEJ(TO_BE_SAMPLED,Y_INDICES) samples a field at a list of Y indices, which are a
subset of its Y axis

http://www.netlib.org/
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

Arguments: TO_BE_SAMPLED Data to be sample

 Y_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X Inherited from TO_BE_SAMPLED

 Y ABSTRACT; length same as Y_INDICES

 Z Inherited from TO_BE_SAMPLED

 T Inherited from TO_BE_SAMPLED

See the demonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes(see p. 69), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.30. SAMPLEK

SAMPLEK(TO_BE_SAMPLED, Z_INDICES) samples a field at a list of Z indices, which are a
subset of its Z axis

Arguments: TO_BE_SAMPLED Data to sample

 Z_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X Inherited from TO_BE_SAMPLED

 Y Inherited from TO_BE_SAMPLED

 Z ABSTRACT; length same as Z_INDICES

 T Inherited from TO_BE_SAMPLED

See the demonstration ef_sort_demo.jnl for a common useage of this function. As with other

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

functions which change axes(see p. 69), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.31. SAMPLEL

SAMPLEL(TO_BE_SAMPLED, T_INDICES) samples a field at a list of T indices, a subset of
its T axis

Arguments: TO_BE_SAMPLED Data to sample

 T_INDICES list of indices of the variable TO_BE_SAMPLED

Result Axes: X Inherited from TO_BE_SAMPLED

 Y Inherited from TO_BE_SAMPLED

 Z Inherited from TO_BE_SAMPLED

 T ABSTRACT; length same as X_INDICES

See thedemonstration ef_sort_demo.jnl for a common useage of this function. As with other
functions which change axes (see p. 69), specify any region information for the variable
TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.32. SAMPLEIJ

SAMPLEIJ(DAT_TO_SAMPLE,XPTS,YPTS) Returns data sampled at a subset of its grid
points, defined by (XPTS, YPTS)

Arguments: DAT_TO_SAMPLE Data to sample, field of x, y, and perhaps z and t

 XPTS X indices of grid points

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

 YPTS Y indices of grid points

Result Axes: X ABSTRACT, length of list (xpts,ypts)

 Y NORMAL (no axis)

 Z Inherited from DAT_TO_SAMPLE

 T Inherited from DAT_TO_SAMPLE

 As with other functions which change axes (see p. 69), specify any region information for the
variable TO_BE_SAMPLED explicitly in the function call.

Ch3 Sec2.3.33. SAMPLET_DATE

SAMPLET_DATE (DAT_TO_SAMPLE, YR, MO, DAY, HR, MIN, SEC) Returns data
sampled by interpolating to one or more times

Arguments: DAT_TO_SAMPLE Data to sample, field of x, y, z and t

 YR Year(s), integer YYYY

 MO Month(s), integer month number MM

 DAY Day(s) of month, integer DD

 HR Hour(s) integer HH

 MIN Minute(s), integer MM

 SEC Second(s), integer SS

Result Axes: X Inherited from DAT_TO_SAMPLE

 Y Inherited from DAT_TO_SAMPLE

 Z Inherited from DAT_TO_SAMPLE

 T ABSTRACT; length is # times sampled

 As with other functions which change axes (see p. 69), specify any region information for the
variable DAT_TO_SAMPLE explicitly in the function call.

Example:

List wind speed at a subset of points from the COADS_CLIMATOLOGY data set

yes? use coads_climatology
yes? set region/x=131e:135e/y=39n
yes? list samplet_date(wspd, 0, {5,8}, {16,15}, {12,12}, 0, 0)
yes? list samplet_date(wspd, 0, {5,8}, {16,15}, {12,12}, 0, 0)

 SAMPLET_DATE(WSPD, 0, {5,8}, {16,15}, {12,12}, 0, 0)
 LATITUDE: 39N
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 131E 133E 135E
 56 57 58
1 / 1: 5.782 6.143 5.660
2 / 2: 5.313 5.386 5.304

Ch3 Sec2.3.34. SAMPLEXY

SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS) Returns data sampled at a set of (X,Y)
points, using linear interpolation.

Arguments: DAT_TO_SAMPLE Data to sample

 XPTS X values of sample points

 YPTS Y values of sample points

Result Axes: X ABSTRACT; length same as XPTSand YPTS

 Y NORMAL (no axis)

 Z Inherited from DAT_TO_SAMPLE

 T Inherited from DAT_TO_SAMPLE

Note:

SAMPLEXY is a "grid-changing" function; its output grid is different from the input arguments.
 Therefore it is best to use explicit limits on the first argument rather than a SET REGION
command. (See p. 69)

Example:

Use SAMPLEXY to extract a section of data taken along a slanted line in the Pacific.

First we generate the locations xlon, ylat (Figure3_3a). One could use a ship track, specifying its
coordinates as xlon, ylat.

yes? USE levitus_climatology
yes? LET xlon = 234.5 + I[I=1:50] ! define the slant line
yes? LET dely = 24./49
yes? LET ylat = 24.5 - dely*i[i=1:50] + dely
yes? PLOT/VS/LINE/SYM=27 xlon,ylat ! line off Central America
yes? GO land

Now sample the field "salt" along this track and make a filled contour plot. The horizontal axis is
abstract; it is a count of the number of points along the track. To speed the calculation, or if we
otherwise want to restrict the region used on the variable salt, put that information in explicit limits
on the first argument. (Figure3_3b)

yes? LET slantsalt = samplexy(salt[x=200:300,y=0:30],xlon,ylat)
yes? FILL/LEVELS=(33.2,35.2,0.1)/VLIMITS=0:4000 slantsalt

Ch3 Sec2.3.35. SAMPLEXY_CLOSEST

SAMPLEXY_CLOSEST(DAT_TO_SAMPLE,XPTS,YPTS) Returns data sampled at a set of
(X,Y) points, using nearest grid intersection.

Arguments: DAT_TO_SAMPLE Data to sample

 XPTS X values of sample points

 YPTS Y values of sample points

Result Axes: X ABSTRACT; length same as XPTSand YPTS

 Y NORMAL (no axis)

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig03a.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig03b.gif

 Z Inherited from DAT_TO_SAMPLE

 T Inherited from DAT_TO_SAMPLE

Note:SAMPLEXY_CLOSEST is a "grid-changing" function; its output grid is different
from the input arguments. Therefore it is best to use explicit limits on the first argument
rather than a SET REGION command. (See p. 69)

This function is a quick-and-dirty substitute for the SAMPLEXY function. It runs much
faster than SAMPLEXY, since it does no interpolation. It returns the function value at the
grid point closest to each point in XPTS, YPTS. It is less accurate than SAMPLEXY, but
may give adequate results in a much shorter time for large samples.

Example: compare with SAMPLEXY output

yes? USE levitus_climatology
yes? LET xlon = 234.5 + I[I=1:20]
yes? LET dely = 24./19
yes? LET ylat = 24.5 - dely*i[i=1:20] + dely

yes? LET a = samplexy(salt[X=200:300,Y=0:30,K=1], xlon, ylat)
yes? LET b = samplexy_closest(salt[X=200:300,Y=0:30,K=1], xlon, ylat)

yes? LIST a, b
 DATA SET:"./fer_dsets/descr/levitus_climatology.cdf
 Levitus annual climatology (1x1 degree)
 X: 0.5 to 20.5
 DEPTH (m): 0
 TIME: 02-JUL 14:54
Column 1: A is SAMPLEXY(SALT[X=200:300,Y=0:30,K=1],XLON,YLAT)
Column 2: B is SAMPLEXY_CLOSEST(SALT[X=200:300,Y=0:30,K=1],XLON,YLAT)
 A B
1 / 1: 34.22 34.22
2 / 2: 34.28 34.26
3 / 3: 34.35 34.39
4 / 4: 34.41 34.43
5 / 5: 34.44 34.44
6 / 6: 34.38 34.40
7 / 7: 34.26 34.22
8 / 8: 34.09 34.07
9 / 9: 33.90 33.92
10 / 10: 33.74 33.78
11 / 11: 33.64 33.62
12 / 12: 33.63 33.62
13 / 13: 33.69 33.67

14 / 14: 33.81 33.75
15 / 15: 33.95 34.00
16 / 16: 34.11 34.11
17 / 17: 34.25 34.22
18 / 18: 34.39 34.33
19 / 19: 34.53 34.56

20 / 20: 34.65 34.65

Ch3 Sec2.3.36. SAMPLEXY_CURV

SAMPLEXY_CURV Returns data which is on a curvilinear grid, sampled at a set of (X,Y)
points, using interpolation.

Arguments: DAT_TO_SAMPLE Data to sample

 DAT_LON Longitude coordinates of the curvilinear grid

 DAT_LAT Latitude coordinates of the curvilinear grid

 XPTS X values of sample points

 YPTS Y values of sample points

Result Axes: X ABSTRACT; length same as XPTSand YPTS

 Y NORMAL (no axis)

 Z Inherited from DAT_TO_SAMPLE

 T Inherited from DAT_TO_SAMPLE

Note:SAMPLEXY_CLOSEST is a "grid-changing" function; its output grid is different
from the input arguments. Therefore it is best to use explicit limits on the first argument
rather than a SET REGION command. (See p. 69)

Ch3 Sec2.3.37. SCAT2GRIDGAUSS_XY

SCAT2GRIDGAUSS_XY(XPTS, YPTS, F, XCOORD, YCOORD, XSCALE, YSCALE,
XCUTOFF, YCUTOFF) Use Gaussian weighting to grid scattered data to an XY grid

Arguments: XPTS x-coordinates of scattered input triples; may be fcn of time

 YPTS y-coordinates of scattered input triples; may be fcn of time

 F F(X,Y) 3rd component of scattered input triples. May be
fcn of time

 XAXPTS coordinates of X-axis of output grid. Must be regularly
spaced.

 YAXPTS coordinates of Y-axis of output grid. Must be regularly
spaced.

 XSCALE Mapping scale for Gaussian weights in Y direction, in data
units (e.g. lon or m). See the discussion below.

 YSCALE Mapping scale for Gaussian weights in Y direction, in data
units (e.g. lat or m)

 XCUTOFF Cutoff for weight function in the X direction. Only
scattered points within XCUTOFF*XSCALE and
YCUTOFF*YSCALE of the grid box center are included
in the sum for the grid box.

 YCUTOFF Cutoff for weight function in the Y direction.

Result Axes: X Inherited from XAXPTS

 Y Inherited from YAXPTS

 Z NORMAL (no axis)

 T Inherited from F

Note:

The SCAT2GRIDGAUSS functions are "grid-changing" functions; the output grid is different
from the input arguments. Therefore it is best to use explicit limits on any of the arguments rather
than a SET REGION command. (See p. 69)

Quick example:

yes? DEFINE AXIS/X=180:221:1 xax
yes? DEFINE AXIS/Y=-30:10:1 yax
yes? ! read some data
yes? SET DATA/EZ/VARIABLES="times,lats,lons,var" myfile.dat

yes? LET my_out = SCAT2GRIDGAUSS_XY(lons, lats, var, x[gx=xax], y[gy=yax], 2,
2, 2, 2)
yes? SHADE my_out

The SCAT2GRIDGAUSS* functions use a Gaussian interpolation method to map irregular
locations (xn, yn) to a regular grid (x0, y0). The output grid must have equally-spaced gridpoints in
both the x and y directions. For examples of the gridding functions, run the script
objective_analysis_demo, or see the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Parameters for a square grid and a fairly dense distribution of scattered points relative to the grid
might be XSCALE=YSCALE = 0.5, and XCUTOFF=YCUTOFF = 2. To get better coverage, use
a coarser grid or increase XSCALE, YSCALE and/or XCUTOFF, YCUTOFF.

The value of the gridded function F at each grid point (x0, y0) is computed by:

 F(x0,y0) = Σ(n=1 to Np)F(xn,yn)W(xn,yn) / Σ(n=1 to Np)W(xn,yn)

Where Np is the total number of irregular points within the "influence region" of a particular grid
point, (determined by the CUTOFF parameters, defined below). The Gaussian weight fucntion Wn
is given by

Wn(xn,yn) = exp{-[(xn-x0)2/(X)2 + (yn-y0)2/(Y)2]}

X and Y in the denominators on the right hand side are the mapping scales, arguments XSCALE
and YSCALE.

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

The weight function has a nonzero value everywhere, so all of the scattered points in theory could
be part of the sum for each grid point. To cut computation, the parameters XCUTOFF and
YCUTOFFf are employed. If a cutoff of 2 is used (e.g. XCUTOFF* XSCALE=2), then the
weight function is set to zerowhen Wn< e-4. This occurs where distances from the grid point are
less than 2 times the mapping scales X or Y.

(Reference for this method: Kessler and McCreary, 1993: The Annual Wind-driven Rossby Wave
in the Subthermocline Equatorial Pacific, Journal of Physical Oceanography 23, 1192 -1207)

Ch3 Sec2.3.38. SCAT2GRIDGAUSS_XZ

SCAT2GRIDGAUSS_XZ(XPTS, ZPTS, F, XAXPTS, ZAXPTS, XSCALE, ZSCALE,
XCUTOFF, ZCUTOFF) Use Gaussian weighting to grid scattered data to an XZ grid

See the description under SCAT2GRIDGAUSS_XY (p. 87). Note that The output grid must have
equally-spaced gridpoints in both the x and z directions. For examples of the gridding functions,
run the script objective_analysis_demo, or see the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.39. SCAT2GRIDGAUSS_YZ

SCAT2GRIDGAUSS_YZ(YPTS, zPTS, F, YAXPTS, ZAXPTS, YSCALE, ZSCALE,
YCUTOFF, ZCUTOFF) Use Gaussian weighting to grid scattered data to a YZ grid

See the description under SCAT2GRIDGAUSS_XY (p. 87). Note that the output grid must have
equally-spaced gridpoints in both the y and z directions. For examples of the gridding functions,
run the script objective_analysis_demo, or see the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.40. SCAT2GRIDLAPLACE_XY

SCAT2GRIDLAPLACE_XY(XPTS, YPTS, F, XAXPTS, YAXPTS, CAY, NRNG) Use
Laplace/ Spline interpolation to grid scattered data to an XY grid.

Note:

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

The SCAT2GRIDLAPLACE functions are "grid-changing" functions; the output grid is different
from the input arguments. Therefore it is best to use explicit limits on any of the arguments rather
than a SET REGION command. (See p. 69)

Quick example:

yes? DEFINE AXIS/X=180:221:1 xax
yes? DEFINE AXIS/Y=-30:10:1 yax
yes? ! read some data
yes? SET DATA/EZ/VARIABLES="times,lats,lons,var" myfile.dat

yes? LET my_out = SCAT2GRIDLAPLACE_XY(lons, lats, var, x[gx=xax], y[gy=yax],
2., 5)
yes? SHADE my_out

For examples of the gridding functions, run the script objective_analysis_demo, or see
the on-line demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

The SCAT2GRIDLAPLACE* functions employ the same interpolation method as is used by
PPLUS, and appears elsewhere in Ferret, e.g. in contouring. The parameters are used as follows
(quoted from the PPLUS Users Guide. A reference for this is "Plot Plus, a Scientific Graphics
System", written by Donald W. Denbo, April 8, 1987.):

CAY
If CAY=0.0, Laplacian interpolation is used. The resulting surface tends to have rather sharp
peaks and dips at the data points (like a tent with poles pushed up into it). There is no chance of
spurious peaks appearing. As CAY is increased, Spline interpolation predominates over the
Laplacian, and the surface passes through the data points more smoothly. The possibility of
spurious peaks increases with CAY. CAY= infinity is pure Spline interpolation. An over
relaxation process in used to perform the interpolation. A value of CAY=5 often gives a good
surface.

NRNG
Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
The default used by PPLUS is NRNG = 5

Ch3 Sec2.3.41. SCAT2GRIDLAPLACE_XZ

SCAT2GRIDLAPLACE_XZ(XPTS, ZPTS, F, XAXPTS, ZAXPTS, CAY, NRNG) Use
Laplace/ Spline interpolation to grid scattered data to an XZ grid.

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Arguments: XPTS x-coordinates of scattered input triples. May be fcn of time

 ZPTS z-coordinates of scattered input triples. May be fcn of time

 F F(X,Z) 3rd component of scattered input triples. May be
fcn of time

 XAXPTS coordinates of X-axis of output grid. Must be regularly
spaced.

 ZAXPTS coordinates of Z-axis of output grid. Must be regularly
spaced.

 CAY Amount of spline eqation (between 0 and inf.) vs Laplace
interpolation

 NRNG Grid points more than NRNG grid spaces from the nearest
data point are set to undefined.

Result Axes: X Inherited from XAXPTS

 Y NORMAL (no axis)

 Z Inherited from ZAXPTS

 T Inherited from F

The gridding algorithm is discussed under SCAT2GRIDLAPLACE_XY (p. 93). For examples of
the gridding functions, run the script objective_analysis_demo, or see the on-line
 demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.42. SCAT2GRIDLAPLACE_YZ

SCAT2GRIDLAPLACE_YZ(YPTS, ZPTS, F, YAXPTS, ZAXPTS, CAY, NRNG) Use
Laplace/ Spline interpolation to grid scattered data to an YZ grid.

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Arguments: YPTS y-coordinates of scattered input triples. May be fcn of time

 ZPTS z-coordinates of scattered input triples. May be fcn of time

 F F(Y,Z) 3rd component of scattered input triples. May be
fcn of time

 YAXPTS coordinates of Y-axis of output grid. Must be regularly
spaced.

 ZAXPTS coordinates of Z-axis of output grid. Must be regularly
spaced.

 CAY Amount of spline eqation (between 0 and inf.) vs Laplace
interpolation

 NRNG Grid points more than NRNG grid spaces from the nearest
data point are set to undefined.

Result Axes: X NORMAL (no axis)

 Y Inherited from YAXPTS

 Z Inherited from ZAXPTS

 T Inherited from F

The gridding algorithm is discussed under SCAT2GRIDLAPLACE_XY (p. 93). For examples of
the gridding functions, run the script objective_analysis_demo, or see the on-line
 demonstration
http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

Ch3 Sec2.3.43. SORTI

SORTI(DAT): Returns indices of data, sorted on the I axis in increasing order

http://www.ferret.noaa.gov/Ferret/Demos/objective_analysis_demo/objective_analysis_demo.html

SORTI, SORTJ, SORTK, and SORTL return the indices of the data after it has been sorted. These
functions are used in conjunction with functions such as the SAMPLE functions to do sorting and
sampling. See the demonstration ef_sort_demo.jnl for common useage of these functions.

 As with other functions which change axes (see p. 69), specify any region information for the
variable DAT explicitly in the function call.

Ch3 Sec2.3.44. SORTJ

SORTJ(DAT) Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT

 Y ABSTRACT, same length as DAT y-axisInherited from
DAT

 Z Inherited from DAT

 T Inherited from DAT

See discussion under SORTI

Ch3 Sec2.3.45. SORTK

SORTK(DAT) Returns indices of data, sorted on the I axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT

 Y Inherited from DAT

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

 Z ABSTRACT, same length as DAT x-axis

 T Inherited from DAT

See the discussion under SORTI

Ch3 Sec2.3.46. SORTL

SORTL(DAT) Returns indices of data, sorted on the L axis in increasing order

Arguments: DAT DAT: variable to sort

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z Inherited from DAT

 T ABSTRACT, same length as DAT x-axis

See the discussion under SORTI

Ch3 Sec2.3.47. TAUTO_COR

TAUTO_COR(A): Compute autocorrelation function (ACF) of time series, lags of 0,...,N-1,
where N is the length of the time axis.

Arguments: A A function of time, and perhaps x,y,z

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T ABSTRACT, same length as A time axis (lags)

Note:

TAUTO_COR is a "grid-changing" function; its output grid is different from the input arguments.
 Therefore it is best to use explicit limits on the first argument rather than a SET REGION
command. (See p. 69)

Ch3 Sec2.3.48. XAUTO_COR

XAUTO_COR(A): Compute autocorrelation function (ACF) of a series in X, lags of 0,...,N-1,
where N is the length of the x axis.

Arguments: A A function of x, and perhaps y,z,t

Result Axes: X ABSTRACT, same length as X axis of A (lags)

 Y Inherited from A

 Z Inherited from A

 T Inherited from A

Note:

XAUTO_COR is a "grid-changing" function; its output grid is different from the input arguments.
 Therefore it is best to use explicit limits on the first argument rather than a SET REGION
command. (See p. 69)

Ch3 Sec2.4. Transformations

Transformations (e.g., averaging, integrating, etc.) may be specified along the axes of a variable.

Some transformations (e.g., averaging) reduce a range of data to a point; others (e.g.,
differentiating) retain the range.

When transformations are specified along more than one axis of a single variable the order of
execution is X axis first, then Y then Z then T.

The regridding transformations are described in the chapter "Grids and Regions" (p. 129).

Example syntax: TEMP[Z=0:100@LOC:20] (depth at which temp has value 20)

Valid transformations are

Transform
Default

Argument Description

@DIN definite integral (weighted sum)

@IIN indefinite integral (weighted running sum)

@AVE average

@VAR unweighted variance

@MIN minimum

@MAX maximum

@SHF 1 pt shift

@SBX 3 pt boxcar smoothed

@SBN 3 pt binomial smoothed

@SHN 3 pt Hanning smoothed

@SPZ 3 pt Parzen smoothed

@SWL 3 pt Welch smoothed

@DDC centered derivative

@DDF forward derivative

@DDB backward derivative

@NGD number of valid points

@NBD number of bad (invalid) points flagged

@SUM unweighted sum

@RSUM running unweighted sum

@FAV 3 pt fill missing values with average

@FLN 1 pt fill missing values by linear interpolation

@FNR 1 pt fill missing values with nearest point

@LOC 0 coordinate of ... (e.g., depth of 20 degrees)

@WEQ "weighted equal" (integrating kernel)

@CDA closest distance above

@CDB closest distance below

@CIA closest index above

@CIB closest index below

The command SHOW TRANSFORM will produce a list of currently available transformations.

Examples: Transformations

U[Z=0:100@AVE] – average of u between 0 and 100 in Z

sst[T=@SBX:10] – box-car smooths sst with a 10 time point filter

tau[L=1:25@DDC] – centered time derivative of tau

v[L=@IIN] – indefinite (accumulated) integral of v

qflux[X=@AVE,Y=@AVE] – XY area-averaged qflux

Ch3 Sec2.4.1. General information about transformations

Transformations are normally computed axis by axis; if multiple axes have transformations
specified simultaneously (e.g., U[Z=@AVE,L=@SBX:10]) the transformations will be applied
sequentially in the order X then Y then Z then T. There are two exceptions to this: if @DIN is
applied simultaneously to both the X and Y axes (in units of degrees of longitude and latitude,
respectively) the calculation will be carried out on a per-unit-area basis (as a true double integral)
instead of a per-unit-length basis, sequentially. This ensures that the COSINE(latitude) factors will
be applied correctly. The same applies to @AVE simultaneously on X and Y.

Data that are flagged as invalid are excluded from calculations.

When calculating integrals and derivatives (@IIN, @DIN, @DDC, @DDF, and @DDB) Ferret
attempts to use standardized units for the grid coordinates. If the underlying axis is in a known unit
of length Ferret converts grid box lengths to meters. If the underlying axis is in a known unit of
time Ferret converts grid box lengths to seconds. If the underlying axis is degrees of longitude a
factor of COSINE (latitude) is applied to the grid box lengths in meters.

If the underlying axis units are unknown Ferret uses those unknown units for the grid box lengths.
(If Ferret does not recognize the units of an axis it displays a message to that effect when the
DEFINE AXIS or SET DATA command defines the axis.) See command DEFINE AXIS/UNITS
(p. 318) in the Commands Reference in this manual for a list of recognized units.

All integrations and averaging are accomplished by multiplying the width of each grid box by the
value of the variable in that grid box—then summing and dividing as appropriate for the particular
transformation.

If integration or averaging limits are given as world coordinates, the grid boxes at the edges of the
region specified are weighted according to the fraction of grid box that actually lies within the
specified region. If the transformation limits are given as subscripts, the full box size of each grid
point along the axis is used—including the first and last subscript given. The region information
that is listed with the output reflects this.

Some transformations (derivatives, shifts, smoothers) require data points from beyond the edges of
the indicated region in order to perform the calculation. Ferret automatically accesses this data as
needed. It flags edge points as missing values if the required beyond-edge points are unavailable
(e.g., @DDC applied on the X axis at I=1).

Ch3 Sec2.4.2. Transformations applied to irregular regions

Since transformations are applied along the orthogonal axes of a grid they lend themselves
naturally to application over "rectangular" regions (possibly in 3 or 4 dimensions). Ferret has
sufficient flexibility, however, to perform transformations over irregular regions.

Suppose, for example, that we wish to determine the average wind speed within an irregularly
shaped region of the globe defined by a threshold sea surface temperature value. We can do this
through the creation of a mask, as in this example:

yes? SET DATA coads_climatology
yes? SET REGION/l=1/@t ! January in the Tropical Pacific
yes? LET sst28_mask = IF sst GT 28 THEN 1
yes? LET masked_wind_speed = wspd * sst28_mask

yes? LIST masked_wind_speed[X=@AVE,Y=@AVE]

The variable sst28_mask is a collection of 1's and missing values. Using it as a multiplier on the
wind speed field produces a new result that is undefined except in the domain of interest.

When using masking be aware of these considerations:

● Use undefined values rather than zeros to avoid contaminating the calculation with zero
values.

● The masked region is composed of rectangles at the level of resolution of the gridded
variables; the mask does NOT follow smooth contour lines. To obtain a smoother mask it
may be desirable to regrid the calculation to a finer grid.

● Variables from different data sets can be used to mask one another. For example, the
ETOPO60 bathymetry data set can be used to mask regions of land and sea.

Ch3 Sec2.4.3. General information about smoothing transformations

Ferret provides several transformations for smoothing variables (removing high frequency
variability). These transformations replace each value on the grid to which they are applied with a
weighted average of the surrounding data values along the axis specified. For example, the
expression u[T=@SPZ:3] replaces the value at each (I,J,K,L) grid point of the variable "u" with the
weighted average

u at t = 0.25*(u at t-1) + 0.5*(u at t) + 0.25*(u at t+1)

The various choices of smoothing transformations (@SBX, @SBN, @SPZ, @SHN, @SWL)
represent different shapes of weighting functions or "windows" with which the original variable is
convolved. New window functions can be obtained by nesting the simple ones provided. For
example, using the definitions

yes? LET ubox = u[L=@SBX:15]
yes? LET utaper = ubox[L=@SHN:7]

produces a 21-point window whose shape is a boxcar (constant weight) with COSINE (Hanning)
tapers at each end.

Ferret may be used to directly examine the shape of any smoothing window: Mathematically, the
shape of the smoothing window can be recovered as a variable by convolving it with a delta
function. In the example below we examine (PLOT) the shape of a 15-point Welch window
(Figure 3_4).

! define X axis as [-1,1] by 0.2
yes? GO unit_square
yes? SET REGION/X=-1:1
yes? LET delta =
 IF X EQ 0 THEN 1 ELSE 0
! convolve delta with Welch window
yes? PLOT delta[I=@SWL:15]

Ch3 Sec2.4.4. @DIN—definite integral

The transformation @DIN computes the definite integral—a single value that is the integral
between two points along an axis (compare with @IIN). It is obtained as the sum of the
grid_box*variable product at each grid point. Grid points at the ends of the indicated range are
weighted by the fraction of the grid box that falls within the integration interval.

If @DIN is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by indicating a transformation of "@IN4" or "XY integ." See General Information (p 97) for
important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@DIN]

In a latitude/longitude coordinate system X=@DIN is sensitive to the COS(latitude) correction.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig04.gif

Integration over complex regions in space may be achieved by masking the multi-dimensional
variable in question and using the multi-dimensional form of @DIN. For example

yes? LET salinity_where_temp_gt_15 = IF temp GT 15 THEN salt
yes? LIST salinity_where_temp_gt_15[X=@DIN,Y=@DIN,Z=@DIN]

Ch3 Sec2.4.5. @IIN—indefinite integral

The transformation @IIN computes the indefinite integral—at each subscript of the result it is the
value of the integral from the start value to the upper edge of that grid box. It is obtained as a
running sum of the grid_box*variable product at each grid point. Grid points at the ends of the
indicated range are weighted by the fraction of the grid box that falls within the integration
interval. See General Information (p 97) for important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Z=0 u[Y=5S:5N@IIN]

Note 1: The indefinite integral is always computed in the increasing coordinate direction. To
compute the indefinite integral in the reverse direction use

LET reverse_integral = my_var[X=lo:hi@DIN] - my_var[X=lo:hi@IIN]

Note 2: In a latitude/longitude coordinate system X=@IIN is sensitive to the COS(latitude)
correction.

Note 3: The result of the indefinite integral is shifted by 1/2 of a grid cell from its "proper"
location. This is because the result at each grid cell includes the integral computed to the upper end
of that cell. (This was necessary in order that var[I=lo:hi@DIN] and var[I=lo:hi@IIN] produce
consistent results.)

To illustrate, consider these commands

yes? LET one = x-x+1
yes? LIST/I=1:3 one[I=@din]
 X-X+1
 X: 0.5 to 3.5 (integrated)
 3.000
yes? LIST/I=1:3 one[I=@iin]
 X-X+1
 indef. integ. on X
1 / 1: 1.000

2 / 2: 2.000
3 / 3: 3.000

The grid cell at I=1 extends from 0.5 to 1.5. The value of the integral at 1.5 is 1.000 as reported but
the coordinate listed for this value is 1 rather than 1.5. Two methods are available to correct for
this 1/2 grid cell shift.

Method 1: correct the result by subtracting the 1/2 grid cell error

yes? LIST/I=1:3 one[I=@iin] - one/2
 ONE[I=@IIN] - ONE/2
1 / 1: 0.500
2 / 2: 1.500
3 / 3: 2.500

Method 2: correct the coordinates by shifting the axis 1/2 of a grid cell

yes? DEFINE AXIS/X=1.5:3.5:1 xshift
yes? LET SHIFTED_INTEGRAL = one[I=@IIN]
yes? LET corrected_integral = shifted_integral[GX=xshift@ASN]
yes? LIST/I=1:3 corrected_integral
 SHIFTED_INTEGRAL[GX=XSHIFT@ASN]
1.5 / 1: 1.000
2.5 / 2: 2.000
3.5 / 3: 3.000

Ch3 Sec2.4.6. @AVE—average

The transformation @AVE computes the average weighted by grid box size—a single number
representing the average of the variable between two endpoints.

If @AVE is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by showing @AV4 or "XY ave" as the transformation. See General Information (p 97) for
important details about this transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@AVE]

Note that the unweighted mean can be calculated using the @SUM and @NGD transformations.

Averaging over complex regions in space may be achieved by masking the multi-dimensional
variable in question and using the multi-dimensional form of @AVE. For example

yes? LET salinity_where_temp_gt_15 = IF temp GT 15 THEN salt
yes? LIST salinity_where_temp_gt_15[X=@AVE,Y=@AVE,Z=@AVE]

When we use var[x=@AVE] Ferret averages over the grid points of the variable along the X axis,
using any region in X that is in place. IF a specified range is given X=x1:x2@ave, then Ferret uses
portions of grid cells to average over that exact region.

yes? USE coads_climatology
yes? LIST/L=1/Y=45 sst[x=301:305@AVE]
 VARIABLE : SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 59W to 55W (averaged)
 LATITUDE : 45N
 TIME : 16-JAN 06:00
 2.6557

yes? LET var = sst[x=301:305]
yes? LIST/L=1/Y=45 var
 VARIABLE : SST[X=301:305]
 SUBSET : 3 points (LONGITUDE)
 LATITUDE : 45N
 TIME : 16-JAN 06:00
 45N
59W / 141: 2.231
57W / 142: 2.604
55W / 143: 3.183

yes? LIST/L=1/Y=45 var[x=@AVE]
 VARIABLE : SST[X=301:305]
 LONGITUDE: 60W to 54W (averaged)
 LATITUDE : 45N
 TIME : 16-JAN 06:00
 2.6730

The last average is taken not from a specific X to another specific X, but over all grid cells in the
range where the variable var is defined. Note in each listing the LONGITUDE range of the
average.

Ch3 Sec2.4.7. VAR—weighted variance

The transformation @VAR computes the weighted variance of the variable with respect to the
indicated region (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et
al., 1986).

As with @AVE, if @VAR is applied simultaneously to multiple axes the calculation is performed
as the variance of a block of data rather than as nested 1-dimensional variances. See General
Information (p 97) for important details about this transformation.

Ch3 Sec2.4.8. MIN—minimum

The transformation @MIN finds the minimum value of the variable within the specified axis
range. See General Information (p 97) for important details about this transformation.

Example:

For fixed Z and Y

yes? PLOT/T="1-JAN-1982":"1-JAN-1983" temp[X=160E:160W@MIN]

plots a time series of the minimum temperature found between longitudes 160 east and 160 west.

Ch3 Sec2.4.9. @MAX—maximum

The transformation @MAX finds the maximum value of the variable within the specified axis
range. See also @MIN. See General Information (p 97) for important details about this
transformation.

Ch3 Sec2.4.10. @SHF:n—shift

The transformation @SHF shifts the data up or down in subscript by the number of points given as
the argument. The default is to shift by 1 point. See General Information (p 97) for important
details about this transformation.

Examples:

U[L=@SHF:2]

associates the value of U[L=3] with the subscript L=1.

U[L=@SHF:1]-U

gives the forward difference of the variable U along the L axis.

Ch3 Sec2.4.11. @SBX:n—boxcar smoother

The transformation @SBX applies a boxcar window (running mean) to smooth the variable along
the indicated axis. The width of the boxcar is the number of points given as an argument to the
transformation. The default width is 3 points. All points are weighted equally, regardless of the
sizes of the grid boxes, making this transformation best suited to axes with equally spaced points.
If the number of points specified is even, however, @SBX weights the end points of the boxcar
smoother as ½.. See General Information (p 97) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0 u[L=1:120@SBX:5]

The transformation @SBX does not reduce the number of points along the axis; it replaces each of
the original values with the average of its surrounding points. Regridding can be used to reduce the
number of points.

Ch3 Sec2.4.12. @SBN:n—binomial smoother

The transformation @SBN applies a binomial window to smooth the variable along the indicated
axis. The width of the smoother is the number of points given as an argument to the
transformation. The default width is 3 points. The weights are applied without regard to the widths
of the grid boxes, making this transformation best suited to axes with equally spaced points. See
General Information (p 97) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@SBN:15]

The transformation @SBN does not reduce the number of points along the axis; it replaces each of
the original values with a weighted sum of its surrounding points. Regridding can be used to
reduce the number of points. The argument specified with @SBN, the number of points in the
smoothing window, must be an odd value; an even value would result in an effective shift of the

data along its axis.

Ch3 Sec2.4.13. @SHN:n—Hanning smoother

Transformation @SHN applies a Hanning window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation. Note that the Hanning
window used by Ferret contains only non-zero weight values with the window width.The default
width is 3 points. Some interpretations of this window function include zero weights at the end
points. Use an argument of N-2 to achieve this effect (e.g., @SBX:5 is equivalent to a 7-point
Hanning window which has zeros as its first and last weights). See General Information (p 97) for
important details about this transformation.

Ch3 Sec2.4.14. @SPZ:n—Parzen smoother

Transformation @SPZ applies a Parzen window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation. The default window width is
3 points. See General Information (p 97) for important details about this transformation.

Ch3 Sec2.4.15. @SWL:n—Welch smoother

Transformation @SWL applies a Welch window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation. The default window width is
3 points. See General Information (p 97) for important details about this transformation.

Ch3 Sec2.4.16. @DDC—centered derivative

The transformation @DDC computes the derivative with respect to the indicated axis using a
centered differencing scheme. The units of the underlying axis are treated as they are with
integrations. If the points of the axis are unequally spaced, note that the calculation used is still
(Fi+1 – Fi–1) / (Xi+1 – Xi–1) . See General Information (p 97) for important details about this
transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDC]

Ch3 Sec2.4.17. @DDF—forward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A forward
differencing scheme is used. The units of the underlying axis are treated as they are with
integrations. See General Information (p 97) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDF]

Ch3 Sec2.4.18. @DDB—backward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A backward
differencing scheme is used. The units of the underlying axis are treated as they are with
integrations. See General Information (p 97) for important details about this transformation.

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDB]

Ch3 Sec2.4.19. @NGD—number of good points

The transformation @NGD computes the number of good (valid) points of the variable with
respect to the indicated axis. Use @NGD in combination with @SUM to determine the number of
good points in a multi-dimensional region.

Note that, as with @VAR, when @NGD is applied simultaneously to multiple axes the calculation
is applied to the entire block of values rather than to the individual axes. See General Information
(p 97) for important details about this transformation.

Ch3 Sec2.4.20. @NBD—number of bad points

The transformation @NBD computes the number of bad (invalid) points of the variable with
respect to the indicated axis. Use @NBD in combination with @SUM to determine the number of
bad points in a multi-dimensional region.

Note that, as with @VAR, when @NBD is applied simultaneously to multiple axes the calculation
is applied to the entire block of values rather than to the individual axes. See General Information
(p 97) for important details about this transformation.

Ch3 Sec2.4.21. @SUM—unweighted sum

The transformation @SUM computes the unweighted sum (arithmetic sum) of the variable with
respect to the indicated axis. This transformation is most appropriate for regions specified by
subscript. If the region is specified in world coordinates, the edge points are not weighted—they
are wholly included in or excluded from the calculation, depending on the location of the grid
points with respect to the specified limits. See General Information (p 97) for important details
about this transformation.

Ch3 Sec2.4.22. @RSUM—running unweighted sum

The transformation @RSUM computes the running unweighted sum of the variable with respect to
 the indicated axis. @RSUM is to @IIN as @SUM is to @DIN. The treatment of edge points is
identical to @SUM. See General Information (p 97) for important details about this
transformation.

Ch3 Sec2.4.23. @FAV:n—averaging filler

The transformation @FAV fills holes (values flagged as invalid) in variables with the average
value of the surrounding grid points along the indicated axis. The width of the averaging window
is the number of points given as an argument to the transformation. The default is n=3. If an even
value of n is specified, Ferret uses n+1 so that the average is centered. All of the surrounding
points are weighted equally, regardless of the sizes of the grid boxes, making this transformation

best suited to axes with equally spaced points. If any of the surrounding points are invalid they are
omitted from the calculation. If all of the surrounding points are invalid the hole is not filled. See
General Information (p 97) for important details about this transformation.

Example:

yes? CONTOUR/X=160W:160E/Y=5S:0 u[X=@FAV:5]

Ch3 Sec2.4.24. @FLN:n—linear interpolation filler

The transformation @FLN:n fills holes in variables with a linear interpolation from the nearest non-
missing surrounding point. n specifies the number of points beyond the edge of the indicated axis
limits to include in the search for interpolants (default n = 1). Unlike @FAV, @FLN is sensitive to
unevenly spaced points and computes its linear interpolation based on the world coordinate
locations of grid points.

Any gap of missing values that has a valid data point on each end will be filled, regardless of the
length of the gap. However, when a sub-region from the full span of the data is requested
sometimes a fillable gap crosses the border of the requested region. In this case the valid data
point from which interpolation should be computed is not available. The parameter n tells Ferret
how far beyond the border of the requested region to look for a valid data point. See General
Information (p 97) for important details about this transformation.

Example: To allow data to be filled only when gaps in i are less than 15 points, use the @CIA and
@CIB transformations which return the distance from the nearest valid point.

yes? USE my_data
yes? LET allowed_gap = 15
yes? LET gap_size = my_var[i=@cia] + my_var[i=@cib]
yes? LET gap_mask = IF gap_size LE gap_allowed THEN 1
yes? LET my_answer = my_var[i=@fln) * gap_mask

Ch3 Sec2.4.25. @FNR—nearest neighbor filler

The transformation @FNR is similar to @FLN, except that it replicates the nearest point to the
missing value. In the case of points being equally spaced around the missing point, the mean value
is used. See General Information (p 97) for important details about this transformation.

Ch3 Sec2.4.26. @LOC—location of

The transformation @LOC accepts an argument value—the default value is zero if no argument is
specified. The transformation @LOC finds the single location at which the variable first assumes
the value of the argument. The result is in units of the underlying axis. Linear interpolation is used
to compute locations between grid points. If the variable does not assume the value of the
argument within the specified region the @LOC transformation returns an invalid data flag. See
also the discussion of @EVNT, the "event mask" transformation, (p. 115)

For example, temp[Z=0:200@LOC:18] finds the location along the Z axis (often depth in meters)
at which the variable "temp" (often temperature) first assumes the value 18, starting at Z=0 and
searching to Z=200. See General Information (p 97) for important details about this
transformation.

yes? CONTOUR/X=160E:160W/Y=10S:10N temp[Z=0:200@LOC:18]

produces a map of the depth of the 18-degree isotherm. See also the General Information about
transformations section in this chapter (p. 97).

Note that the transformation @LOC can be used to locate non-constant values, too, as the
following example illustrates:

Example: locating non-constant values

Determine the depth of maximum salinity.

yes? LET max_salt = salt[Z=@MAX]
yes? LET zero_at_max = salt - max_salt
yes? LET depth_of_max = zero_at_max[Z=@LOC:0]

Ch3 Sec2.4.27. @WEQ—weighted equal; integration kernel

The @WEQ ("weighted equal") transformation is the subtlest and arguably the most powerful
transformation within Ferret. It is a generalized version of @LOC; @LOC always determines the
value of the axis coordinate (the variable X, Y, Z, or T) at the points where the gridded field has a
particular value. More generally, @WEQ can be used to determine the value of any variable at
those points. See also the discussion of @EVNT, the "event mask" transformation (p. 115). See
General Information (p 97) for important details about this transformation.

Like @LOC, the transformation @WEQ finds the location along a given axis at which the variable
is equal to the given (or default) argument. For example, V1[Z=@WEQ:5] finds the Z locations at
which V1 equals "5". But whereas @LOC returns a single value (the linearly interpolated axis
coordinate values at the locations of equality) @WEQ returns instead a field of the same size as
the original variable. For those two grid points that immediately bracket the location of the
argument, @WEQ returns interpolation coefficients. For all other points it returns missing value
flags. If the value is found to lie identically on top of a grid point an interpolation coefficient of 1
is returned for that point alone. The default argument value is 0.0 if no argument is specified.

Example 1

yes? LET v1 = X/4
yes? LIST/X=1:6 v1, v1[X=@WEQ:1], v1[X=@WEQ:1.2]

X v1 @WEQ:1 @WEQ:1.2
___ _____ ______ ________

 1: 0.250
2: 0.500
3: 0.750
4: 1.000 1.000 0.2000
5: 1.250 0.8000
6: 1.500

The resulting field can be used as an "integrating kernel," a weighting function that when
multiplied by another field and summed will give the value of that new field at the desired
location.

Example 2

Using variable v1 from the previous example, suppose we wish to know the value of the function
X^2 (X squared) at the location where variable v1 has the value 1.2. We can determine it as
follows:

yes? LET x_squared = X^2
yes? LET integrand = x_squared * v1[X=@WEQ:1.2]
yes? LIST/X=1:6 integrand[X=@SUM] !Ferret output below
 X_SQUARED * V1[X=@WEQ:1.2]
 X: 1 to 6 (summed)
 23.20

Notice that 23.20 = 0.8 * (5^2) + 0.2 * (4^2)

Below are two "real world" examples that produce fully labeled plots.

Example 3: salinity on an isotherm

Use the Levitus climatology to contour the salinity of the Pacific Ocean along the 20-degree
isotherm (Figure 3_5).

yes? SET DATA levitus_climatology ! annual sub-surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? LET isotherm_20 = temp[Z=@WEQ:20] ! depth kernel for 20 degrees
yes? LET integrand_20 = salt * isotherm_20
yes? SET VARIABLE/TITLE="Salinity on the 20 degree isotherm" integrand_20
yes? PPL CONSET .12 !contour label size (def. .08)
yes? CONTOUR/LEV=(33,37,.2) integrand_20[Z=@SUM]
yes? GO fland !continental fill

Example 4: month with warmest sea surface temperatures

Use the COADS data set to determine the month in which the SST is warmest across the Pacific
Ocean. In this example we use the same principles as above to create an integrating kernel on the
time axis. Using this kernel we determine the value of the time step index (which is also the month
number, 1–12) at the time of maximum SST (Figure 3_6).

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig05.gif

yes? SET DATA coads_climatology ! monthly surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N ! Pacific Ocean
yes? SET MODE CAL:MONTH
yes? LET zero_at_warmest = sst - sst[l=@max]
yes? LET integrand = L[G=sst] * zero_at_warmest[L=@WEQ] ! "L" is 1 to 12
yes? SET VARIABLE/TITLE="Month of warmest SST" integrand
yes? SHADE/L=1:12/PAL=inverse_grayscale integrand[L=@SUM]

Example 5: values of variable at depths of a second variable:

Suppose I have V1(x,y,z) and MY_ZEES(x,y), and I want to find the values of V1 at depths
MY_ZEES. The following will do that using @WEQ:

yes? LET zero_at_my_zees = Z[g=v1]-my_zees
yes? LET kernel = zero_at_my_zees[Z=@WEQ:0]
yes? LET integrand = kernel*v1
yes? LET v1_on_my_zees = integrand[Z=@SUM]

Ch3 Sec2.4.28. @ITP—interpolate

The @ITP transformation provides the same linear interpolation calculation that is turned on
modally with SET MODE INTERPOLATE but with a higher level of control, as @ITP can be
applied selectively to each axis. @ITP may be applied only to point locations along an axis. The

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig06.gif

result is the linear interpolation based on the adjoining values. Interpolation can be applied on an
axis by axis and variable by variable basis like any other transformation. To apply interpolation
use the transformation "@ITP" in the same way as, say, @SBX, specifying the desired location to
which to interpolate. For example, on a Z axis with grid points at Z=10and Z=20 the syntax
my_var[Z=14@ITP] would interpolate to Z=14 with the computation

 0.6*my_var[Z=10]+0.4*my_var[Z=20].

 The example which follows illustrates the interpolation control that is possible using @ITP:

SET DATA coads_climatology
! with modal interpolation
SET MODE INTERPOLATE
LIST/L=1/X=180/Y=0 sst ! interpolates both lat and long
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 180E (interpolated)
 LATITUDE: 0 (interpolated)
 TIME: 16-JAN 06:00
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 28.36

! with no interpolation
CANCEL MODE INTERPOLATE
LIST/L=1/X=180/Y=0 sst ! gives value at 179E, 1S
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 179E
 LATITUDE: 1S
 TIME: 16-JAN 06:00
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 28.20

! using @ITP to interpolate in longitude, only
LIST/L=1/Y=0 sst[X=180@ITP] ! latitude remains 1S
 SEA SURFACE TEMPERATURE (Deg C)
 LONGITUDE: 180E (interpolated)
 LATITUDE: 1S
 TIME: 16-JAN 06:00
 DATA SET: /home/ja9/tmap/fer_dsets/descr/coads_climatology.des
 28.53

See General Information (p 97) for important details about this transformation.

Ch3 Sec2.4.29. @CDA—closest distance above

The transformation @CDA will compute at each grid point how far it is to the closest valid point
above this coordinate position on the indicated axis. The distance will be reported in the units of
the axis. If a given grid point is valid (not missing) then the result of @CDA for that point will be
0.0. See the example for @CDB below. The result's units are now axis units, e.g., degrees of
longitude to the next valid point above. See General Information (p 97) for important details about
this transformation, and see the example under @CDB below (p 113).

Ch3 Sec2.4.30. @CDB—closest distance below

The transformation @CDB will compute at each grid point how far it is to the closest valid point
below this coordinate position on the indicated axis. The distance will be reported in the units of
the axis. If a given grid point is valid (not missing) then the result of @CDB for that point will be
0.0. The result's units are now axis units, e.g., degrees of longitude to the next valid point below.
See General Information (p 97) for important details about this transformation.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/l=1
yes? LIST sst, sst[x=@cda], sst[x=@cdb] ! results below

 Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
 Column 2: SST[X=@CDA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
above on X ...)
 Column 3: SST[X=@CDB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
below on X ...)

 SST SST SST
125W / 108: 6.700 0.000 0.000
123W / 109: 8.000 2.000
121W / 110: 6.000 4.000
119W / 111: 4.000 6.000
117W / 112: 2.000 8.000
115W / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111W / 115: 2.000 2.000
109W / 116: 8.300 0.000 0.000

Ch3 Sec2.4.31. @CIA—closest index above

The transformation @CIA will compute at each grid point how far it is to the closest valid point

above this coordinate position on the indicated axis. The distance will be reported in terms of the
number of points (distance in index space). If a given grid point is valid (not missing) then the
result of @CIA for that point will be 0.0. See the example for @CIB below. The units of the result
are grid indices; integer number of grid units to the next valid point above. See General
Information (p 97) for important details about this transformation, and see the example under
@CIB below (p 114).

Ch3 Sec2.4.32. @CIB—closest index below

The transformation @CIB will compute at each grid point how far it is to the closest valid point
below this coordinate position on the indicated axis. The distance will be reported in terms of the
number of points (distance in index space). If a given grid point is valid (not missing) then the
result of @CIB for that point will be 0.0. The units of the result are grid indices, integer number of
grid units to the next valid point below. See General Information (p 97) for important details about
this transformation.

Example:

yes? USE coads_climatology
yes? SET REGION/x=125w:109w/y=55s/l=1
yes? LIST sst, sst[x=@cia], sst[x=@cib] ! results below

 Column 1: SST is SEA SURFACE TEMPERATURE (Deg C)
 Column 2: SST[X=@CIA:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
above on X ...)
 Column 3: SST[X=@CIB:1] is SEA SURFACE TEMPERATURE (Deg C) (closest dist
below on X ...)

 SST SST SST
125W / 108: 6.700 0.000 0.000
123W / 109: 4.000 1.000
121W / 110: 3.000 2.000
119W / 111: 2.000 3.000
117W / 112: 1.000 4.000
115W / 113: 7.800 0.000 0.000
113W / 114: 7.800 0.000 0.000
111W / 115: 1.000 1.000
109W / 116: 8.300 0.000 0.000

@EVNT--event mask

This transformation locates "events" in data. An event is the occurrence of a particular value. The
output steps up by a value of 1 for each event, starting from a value of zero. (If the variable takes
on exactly the value of the event trigger the +1 step occurs on that point. If it crosses the value,

either ascending or descending, the step occurs on the first point after the crossing.)

For example, if you wanted to know the maximum value of the second wave, where (say) rising
above a magnitude of 0.1 in variable "ht" represented the onset of a wave, then

yes? LET wave2_mask = IF ht[T=@evnt:0.1] EQ 2 THEN 1

is a mask for the second wave, only. The maximum waveheight may be found with

yes? LET wave2_ht = wave2_mask * ht
yes? LET wave2_max_ht = wave2_ht[T=@max]

Note that @EVNT can be used together with @LOC and @WEQ to determine the location when
an event occurs and the value of other variables as the event occurs, respectively. Since there may
be missing values in the data, and since the instant at which the event occurs may lie immediately
before the step in value for the event mask, the following expression is a general solution.

yes? LET event_mask = my_var[t=@evnt:<value>]
yes? LET event_n = IF ABS(MISSING(event_mask[L=@SBX],event_mask)-n) LE 0.67
THEN my_var

So that

event_n[t=@LOC:<value>]

is the time at which event "n" occurs, and

event_n[t=@WEQ:<value>]

is the integrating kernel (see @WEQ)

Ch3 Sec2.5. IF-THEN logic ("masking")

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the IF-THEN logic
is simply (by example)

LET a = IF a1 GT b THEN a1 ELSE a2

(read as "if a1 is greater than b then a1 else a2").

This syntax is especially useful in creating masks that can be used to perform calculations over

regions of arbitrary shape. For example, we can compute the average air-sea temperature
difference in regions of high wind speed using this logic:

SET DATA coads_climatology
SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast_wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst
LET fast_tdiff = tdiff * fast_wind

We can also make compound IF-THEN statements. The parentheses are included here for clarity,
but are not necessary.

LET a = IF (b GT c AND b LT d) THEN e

LET a = IF (b GT c OR b LT d) THEN e

LET a = IF (b GT c AND b LT d) THEN e ELSE q

The user may find it clearer to think of this logic as WHERE-THEN-ELSE to aviod confusion
with the IF used to control conditional execution of commands. Compound and multi-line IF-
THEN-ELSE constructs are not allowed in embedded logic.

Ch3 Sec2.6. Lists of constants ("constant arrays")

The syntax {val1, val2, val3} is a quick way to enter a list of constants. For example

yes? LIST {1,3,5}, {1,,5}
 X: 0.5 to 3.5
 Column 1: {1,3,5}
 Column 2: {1,,5}
 {1,3,5} {1,,5}
1 / 1: 1.000 1.000
2 / 2: 3.000
3 / 3: 5.000 5.000

Note that a constant variable is always an array oriented in the X direction To create a constant
aray oriented in, say, the Y direction use YSEQUENCE

yes? STAT/BRIEF YSEQUENCE({1,3,5})

 Total # of data points: 3 (1*3*1*1)
 # flagged as bad data: 0

 Minimum value: 1
 Maximum value: 5
 Mean value: 3 (unweighted average)

Below are two examples illustrating uses of constant arrays. (See the constant_array_demo journal
file)

Ex. 1) plot a triangle (Figure 3_7)

LET xtriangle = {0,.5,1}
LET ytriangle = {0,1,0}
POLYGON/LINE=8 xtriangle, ytriangle, 0

Or multiple triangles (Figure 3_8) See polymark.jnl regarding this figure

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig07.gif

Ex. 2) Sample Jan, June, and December from sst in coads_climatology

yes? USE coads_climatology
yes? LET my_sst_months = SAMPLEL(sst, {1,6,12})
yes? STAT/BRIEF my_sst_months

Total # of data points: 48600 (180*90*1*3)
flagged as bad data: 21831
Minimum value: -2.6
Maximum value: 31.637
Mean value: 17.571 (unweighted average)

Ch3 Sec3. EMBEDDED EXPRESSIONS

Ferret supports "immediate mode" mathematical expressions—that is, numerical expressions that

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch3_fig08.gif

may be embedded anywhere within a command line. These expressions are evaluated immediately
by Ferret—before the command itself is parsed and executed. Immediate mode expressions are
enclosed in grave accents, the same syntax used by the Unix C shell. Prior to parsing and executing
the command Ferret will replace the full grave accent expression, including the accent marks, with
an ASCII string representing the numerical value. For example, if the given command is

CONTOUR/Z=`temp[X=180,Y=0,Z=@LOC:15]` salt

Ferret will evaluate the expression "temp[X=180,Y=0,Z=@LOC:15]" (the depth of the 15-degree
isotherm at the equator/dateline—say, it is 234.5 meters). Ferret will generate and execute the
command

CONTOUR/Z=234.5 salt

Embedded expressions:

Embedded expressions: the expression must evaluate to a single number, a scalar, or Ferret will
respond that the command contains an error. If the result is invalid the numerical string will be
"bad" (see BAD= in following section, p. 120). Region qualifiers that begin a command containing
an embedded expression will be used in the evaluation of the expression. If multiple embedded
expressions are used in a single command they will be evaluated from left to right within the
command. This means that embedded expressions used to specify region information (e.g., the
above example) may influence the evaluation of other embedded expressions to the right. When
embedded expressions are used within commands that are arguments of a REPEAT command their
evaluation is deferred until the commands are actually executed. Thus the embedded expressions
are re-evaluated at each loop index of the REPEAT command. Grave accents have a higher
priority than any other syntax character. Thus grave accent expressions will be evaluated even if
they are enclosed within quotation marks, parentheses, square brackets, etc. Substitutions based on
dollar-signs (command script arguments and symbols) will be made before embedded expressions
are evaluated. A double grave accent will be translated to a single grave accent and not actually
evaluated. Thus double grave accents provide a mechanism to defer evaluation so that grave accent
expressions may be passed to the Unix command line with the SPAWN command or may be
passed as arguments to GO scripts (to be evaluated INSIDE the script). The state of MODE
VERIFY will determine if the evaluation of the embedded expression is echoed at the command
line—similar to REPEAT loops.

The grave accent syntax may also be used to force immediate evaluation and substitution of a
string variable in a command. Note that since region qualifiers that begin a command containing
an embedded expression are used in the evaluation of the expression, the string variable may not
contain a region qualifier.

Ch3 Sec3.1. Special calculations using embedded expressions

By default Ferret formats the results of embedded expressions using 5 significant digits. If the
result of the expression is invalid (e.g., 1/0) the result by default is the string "bad". Controls allow
you to specify the formatting of embedded expression results in both valid and invalid cases and to
query the size and shape of the result.

The syntax to achieve this control is KEYWORD=VALUE pairs inside the grave accents,
following the expression and set off by commas. The recognized keywords are "BAD=",
"PRECISION=", and "RETURN=". Only the first character of the keyword is significant, so they
may be abbreviated as "B=", "P=", and "R=".

PRECISION=, BAD=, and RETURN= may be specified simultaneously, in any order, separated
by commas. If RETURN= is included, however, the other keywords will be ignored.

PRECISION=#digits

can be used to control the number of significant digits displayed, up to a maximum of 10 (actually
at most 7 digits are significant since Ferret calculations are performed in single precision). Ferret
will, however, truncate terminating zeros following the decimal place. Thus

SAY `3/10,PRECISION=7`

will result in

0.3

instead of 0.3000000.

If the value specified for #digits is negative Ferret will interpret this as the desired number of
decimal places rather than the number of significant digits. Thus

SAY `35501/100,P=-2`

will result in

355.01

instead of 355.

In the case of a negative precision value, Ferret will again drop terminating zeros to the right of the
decimal point.

Note that the precision of the embedded expression is used as the command is parsed, and any

precision controls in the rest of the command are applied later. So

 LIST/PRECISION=10 `100000000 + 12345`

will result in

W= ZW= set width and set zero-filled width.

Formatting immediate mode expressions may be done by specifying the width or zero-filled
width:

yes? SAY Answer: `5.3,w=8`
Answer: 5.3
yes? SAY Answer: `5.3,zw=8`
Answer: 000005.3

BAD=string

can be used to control the text which is produced when the result of the immediate mode
expression is invalid. Thus

SAY `1/0,BAD=missing`

will result in

missing

or

SAY `1/0,B=-999`

will result in

-999

RETURN=

The keyword RETURN= can reveal the size and shape of the result. RETURN= may take
arguments

● SHAPE
● ISTART, JSTART, KSTART, or LSTART
● IEND, JEND, KEND, or LEND

● XSTART, YSTART, ZSTART, or TSTART
● XEND, YEND, ZEND, or TEND
● SIZE
● ISIZE, JSIZE, KSIZE, LSIZE
● BAD
● CALENDAR
● T0
● UNITS
● IUNITS, JUNITS, KUNITS, LUNITS
● XUNITS, YUNITS, ZUNITS, TUNITS
● TITLE
● GRID
● IAXIS, JAXIS, KAXIS, or LAXIS
● XAXIS, YAXIS, ZAXIS, or TAXIS
● DSET, DSETNUM, DSETPATH, DSETTITLE
● NC_SCALE, NC_OFF
● USER_SCALE, USER_OFF

The RETURN= option in immediate mode expressions does not actually compute the result unless
it must. For example, the expression

 `sst, RETURN=TEND`

will return the formatted coordinate for the last point on the T axis of variable sst without actually
reading or computing the values of sst. This allows Ferret scripts to be constructed so that they can
anticipate the size of variables and act accordingly.

Note that this does not apply to variable definitions which involve grid-changing variables that
return results on ABSTRACT axes. For those variables the size and shape of the result may depend
on data values, so the entire result must be computed in order to determine many of the return=
attributes

RETURN=SHAPE

Returns the 4-dimensional shape of the result—i.e., a list of those axes along which the result
comprises more than a single point. For example, a global sea surface temperature field at a
 single point in time:

SAY `SST[T=1-JAN-1983],RETURN=SHAPE`

will result in

XY

See Symbol Substitutions in the chapter "Handling String Data" (p. 217) for examples showing the
special utility of this feature.

RETURN=SIZE

Returns the total number of points in the variable -- Nx*Ny*Nz*Nt

RETURN=ISTART (and similarly JSTART, KSTART, and LSTART)

Returns the starting index of the result along the indicated axis: I, J, K, or L. For example, if CAST
is a vertical profile with points every 10 meters of depth starting at 10 meters then Z=100 is the
10th vertical point, so

SAY `CAST[Z=100:200],RETURN=KSTART`

will result in

10

RETURN=IEND (and similarly JEND, KEND, and LEND)

Returns the ending index of the result along the indicated axis: I, J, K, or L. In the example above

SAY `CAST[Z=100:200],RETURN=KEND`

will result in

20

The size and shape information revealed by RESULT= is useful in creating sophisticated scripts.
For example, these lines could be used to verify that the user has passed a 1-dimensional field as
the first argument to a script

LET my_expr = $1
DEFINE SYMBOL SHAPE `my_expr,RESULT=SHAPE`
QUERY/IGNORE ($SHAPE%|X|Y|Z|T|<Expression must be 1-dimensional%)

RETURN=XSTART (and similarly YSTART, ZSTART, and TSTART)

Returns the first grid point in the current region, in world coordinates. Note that the format of the
result can be controlled by setting or cancelling MODE LONG_LABEL for the X axis, MODE
LAT_LABEL for the Y axis, or MODE CALENDAR for a time axis.

RETURN=XEND (and similarly YEND, ZEND, and TEND)

 Returns the last grid point of specified world coordinate region, in world units.

RETURN=ISIZE (and similarly JSIZE, KSIZE, LSIZE

Returns the number of points along one axis, within the currently defined region.

RETURN=BAD

Returns the missing value flag from the expression

RETURN=T0

Returns the T0 string from the time axis of the variable

RETURN=CALENDAR

Returns the calendar name from the time axis of the variable

RETURN=UNIT

Returns the units string from the variable

RETURN=XUNIT (and similarly YUNIT, ZUNIT, and TUNIT)

Returns the units string from the axis

RETURN=IUNIT (and similarly JUNIT, KUNIT, and LUNIT)

Returns the units string from the axis

Example:

yes? say `sst, RETURN=UNIT`

 !-> MESSAGE/CONTINUE Deg C

yes? say `sst, RETURN=TUNIT`

 !-> MESSAGE/CONTINUE DAYS

RETURN=TITLE

Returns the title of a variable

RETURN=GRID

Returns the grid name of a variable

RETURN=IAXIS (and similarly JAXIS, KAXIS, and LAXIS)

Returns the name of an axis on which the variable is defined.

RETURN=XAXIS (and similarly YAXIS, ZAXIS, and TAXIS)

Returns the name of an axis on which the variable is defined.

RETURN=DSET

Returns data set name. This is the data set name without the file pathname.

Example:

yes? USE "/home/rmb_dat/testfile.nc"
yes? SAY `sst,RETURN=dset`
!-> MESSAGE/CONTINUE testfile
testfile

RETURN=DSETNUM

Returns data set number from the expression.

yes? SAY `sst,RETURN=dsetnum`
!-> MESSAGE/CONTINUE 1
1

RETURN=DSETPATH

Returns the path of the data set information from the expression. A leading slash on the pathname
can cause trouble when the result is parsed by Ferret. Putting the result in a string variable is one
way to deal with this.

yes? LET a = "`sst,RETURN=dsetpath`"
!-> DEFINE VARIABLE a = "/home/rmb_dat/testfile.nc"

RETURN=DSETTITLE

Returns data set title from the expression, if it exists. This returns the title in a NetCDF file which
is specified as a global attribute :title= "Title text";

yes? LET a = "`sst,RETURN=dsettitle`"
!-> DEFINE VARIABLE a = "MERCATOR SECTION ATL Gulf Cadiz"

RETURN=NC_SCALE, NC_OFF

Returns the scale and offset that were defined by a NetCDF attribute for the variable. If the
stepfiles of a multi-file NetCDF file have different scale and offset values (see p. 267), these
commands return the latest values that were applied.

RETURN=USER_SCALE, USER_OFF

Returns the scale and offset that were set using a SET VARIABLE command with the /SCALE=
or /OFFSET qualifiers. (see p. 393)

Ch3 Sec4. DEFINING NEW VARIABLES

The ability to define new variables lies at the heart of the computational power that Ferret
provides. Complex analyses in Ferret generally proceed as hierarchies of simple variable
definitions. As a simple example, suppose we wish to calculate the root mean squared value of
variable, V, over 100 time steps. We could achieve this with the simple hierarchy of definitions:

LET v_rms = v_mean_sq ^ 0.5
LET v_mean_sq = v_squared[L=@AVE]
LET v_squared = v * v
SET VARIABLE/TITLE="RMS V" v_rms

LIST/L=1:100 v_rms

(listed output not included)

As the example shows, the variables can be defined in any order and without knowledge in
advance of the domain over which they will be evaluated. As variable definitions are given to
Ferret with the LET (alias for DEFINE VARIABLE) command the expressions are parsed but not
evaluated. Evaluation occurs only when an actual request for data is made. In the preceding
example this is the point at which the LIST command is given. At that point Ferret uses the current
context (SET REGION and SET DATA_SET) and the command qualifiers (e.g., "L=1:100") to
determine the domain for evaluation. Ferret achieves great efficiency by evaluating only the

minimum subset of data required to satisfy the request.

One consequence of this approach is that definitions such as

LET a = a + 1 ! nonsense

are nonsense within Ferret. The value(s) of variable "a" come into existence only as they are called
for, thus it is nonsense for them to appear simultaneously on the left and right of an equal sign.

Variable names can be 1 to 24 characters in length and begin with a letter. See the command
reference DEFINE VARIABLE (p. 322) for the available qualifiers.

Ch3 Sec4.1. Global, local, and default variable definitions

All of the above definitions are examples of "global variable definitions." A global variable
definition applies to all data sets. In the above example the expression "v_rms[D=dset_1]" would
be based on the values and domain of the variable V from data set dset_1 and "v_rms[D=dset_2]"
would similarly be drawn from data set dset_2. The domain of v_rms, its size, shape, and
resolution, will depend on the particular data set in which it is evaluated.

Although global variables are simple to use they can lead to ambiguities. Suppose, for example,
that data sets dset_1 and dset_2 contain the following variables:

Dset_1 dset_2
______ ______
speed u, v

If we would like to compare speeds from the two data sets we might be tempted to define a new
variable, speed, as

LET speed = (u*u + v*v)^0.5

In doing so, however, we create an ambiguity of interpretation for the expression
"speed[d=dset_1]".

To avoid this ambiguity we need to create a variable definition, "speed," that is local to data set
dset_2. The qualifier /D= used as follows

LET/D=dset_2 speed = (u*u + v*v)^0.5 ! in dset_2, only

provides this capability. The use of /D=dset_2 indicates that this new definition of "speed" applies

only to data set dset_2.

A convenient shortcut is often to define a "default variable." A default variable is defined using the
/D qualifier with no argument

LET/D speed = (u*u + v*v)^0.5 ! where "speed" doesn't already exist

As a default variable "speed" is a definition that applies only to data sets that would otherwise not
posses a variable named speed. In this sense it is a fallback default.

Ch3 Sec5. DEBUGGING COMPLEX HIERARCHIES OF
EXPRESSIONS

A complex analysis generally proceeds within Ferret as a complex hierarchy of expressions:
variables defined in terms of other variables defined in terms of other variables, etc., often
containing many levels of transformation. When an error message such as "can only contour or
vector a 2D region" occurs it may appear difficult to locate the reason for this message.

A simple strategy to locate the source of such problems is to use the command STAT which shows
the size and shape of variables and expressions (simply edit the offending command line, replacing
the PLOT, CONTOUR, VECTOR, etc. command with STAT and eliminating qualifiers if
necessary) and use SHOW VARIABLE to see the variable definitions. By repeatedly using STAT
to examine the component variables of definitions one can quickly locate the source of the
problem.

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 4: GRIDS AND REGIONS

Ch4 Sec1. OVERVIEW

Information describing a region in space/time, a data set, and a grid is collectively
referred to as the "context." The current context may be examined with the commands
SHOW DATA_SET, SHOW REGION, and SHOW GRID. The context may be set
explicitly with the commands SET DATA_SET, SET REGION, and SET GRID.

The context may be modified for the duration of a single command with qualifiers to the
command name (separated by slashes). The same qualifiers in square brackets may also
modify single variables, changing the context only of that variable:

yes? PLOT/D=levitus_climatology temp, salt

yes? CONTOUR rose[D=etopo20]

yes? FILL/Z=0 temp[L=2] - temp[L=1]

Ch4 Sec2. GRIDS

Every variable has an underlying grid which defines a coordinate space. All grids are in
a sense 4 dimensional (X, Y, Z, and T) but axes normal to the data are represented as
"normal" (such as the Z axis of the surface wind stress).

Grids can be viewed, specified and created using SHOW GRID, SET GRID, DEFINE
AXIS, and DEFINE GRID. These commands are all in the Commands Reference
section of this manual. Data can be regridded by the G= modifier. (See this chapter,
section "Regridding," p. 137)

Ch4 Sec2.1. Defining grids

Axes and grids can be explicitly created by DEFINE AXIS and DEFINE GRID.

NetCDF and TMAP-formatted data set variables have all of the necessary grid and axis
definitions embedded in the data set files, but if you are reading data from an ASCII or
binary file, you must tell Ferret about the underlying grid of your data.

If you are creating abstract expressions entirely from pseudo-variables, you may want to
define a grid in order to define the coordinate space of your calculation. This will also
help produce a nicely labeled plot. (See the chapter "Variables and Expressions", "Grids
and axes of pseudo-variables" (p. 60) and the example in the section on "Abstract
Variables," p. 63.)

Example

This example is taken from the demonstration script "file_reading_demo.jnl". An ASCII
file contains a grid of numbers, 50 rows by 6 columns. Suppose the data are on a 2D
grid of 6 longitudes by 50 latitudes (Figure 4_1).

yes? DEFINE AXIS/X=10E:60E:10/UNIT=DEGREE xlong
yes? DEFINE AXIS/Y=0:49N:1/UNIT=DEGREE ylat
yes? DEFINE GRID/X=xlong/Y=ylat gsnoopy2d
! By default only 1 column is read, /COLUMNS= specifies 6 columns
yes? FILE/VAR=my_2D_var/COL=6/GRID=gsnoopy2d snoopy.dat
yes? CONTOUR my_2D_var

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig01.gif

Ch4 Sec2.2. Time axes and calendars

Data, particularly outputs from models, may be defined with time axes that are not on
 the standard Gregorian calendar. The NetCDF conventions document discusses and
defines usage for different calendars. These conventions for calendars are implemented
in Ferret version 5.3 See:

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html

NetCDF conforms to the conventions in the UDUNITS software package

http://www.unidata.ucar.edu/packages/udunits/

The concept of time units and formatted time needs some thought and explanation. The
possibility of using different calendar definitions also compilcates the question. Time
coordinates (seconds, days, years, etc) are used by the software for computation and
comparison. Formatted time (30-DEC-2003 00:00:00) is for the convenience of the
human user.

Time coordinates, given as so many units (seconds, days, years, etc) since a reference
time is generally impossible to comprehend at a glance. There has to be internal code to
convert to formatted time. Conversion between the time-since-reference form and
formatted time requires that we know the calendar. The calendar says how many days
there are in each month, and hence also implies the length of the year, which therefore
depends on the calendar.

The units second, minute, hour and day (24 hours) are always the same in all calendars
we use for Earth and so the utilities can assume this. Models would expect to use these
units when they write out times in timesteps.

Conversion to units of time (year month day hour minute second) is also needed when
processing data to calculate means over months or other calendar-related intervals and
climatological statistics. For computation, comparisons, plotting and regridding, Ferret
makes the choice to adopt a common length of year for all calendars.

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html#_TN_Ref_viewaxes_b
http://www.unidata.ucar.edu/packages/udunits/

The default calendar in Ferret is the Gregorian calendar. This is implemented as a
"proleptic" calendar, where the definition of a year is consistent throughout time and
does not have an offset in the 1500's as the historical calendars did. However, files
written using the NOAA/CDC standard for the "blended" Julian/Gregorian calendar are
read correctly by Ferret.

Other calendars may be defined using DEFINE AXIS/CALENDAR= or by reading a
variable with a calendar attribute from a NetCDF file (see p. 39). You can set the
calendar type in a descriptor file, with the D_CALTYPE attribute.

Example:

 $BACKGROUND_RECORD
 D_TITLE = 'Model Output, Daily Averages',
 D_T0TIME = '30-DEC-0000 00:00:00',
 D_TIME_UNIT = 3600.,
 D_CALTYPE = 'NOLEAP',
$END

The calendars that are defined for use in Ferret are

calendar name number of days/year notes

GREGORIAN or STANDARD 365.2425 default calendar

JULIAN 365.25 with leap years

NOLEAPor COMMON_YEAR 365 no leap years

360_DAY 360 each month is 30 days

Calendar names are matched using the first three characters.

Example:

Define a calendar axis and regrid an existing variable to this axis:

yes? DEFINE AXIS/CALENDAR=JULIAN/T="15-JAN-1982":"15-DEC-
1985":30/UNITS=days tmodel yes? LET twind = uwnd[GT=tmodel@NRST]

Regridding between different calendars is allowed using the transformations @LIN (the
default), @ASN, or @NRST. When regridding with @LIN from one calendar axis to
another the length of a year is assumed to be constant, therefore the regridding
calculates a scale factor based on the length of a second in each calendar, computed
from the number of seconds per year for the calendars.

The analysis of multi-year daily data is often awkward, because the length of the year
changes for leap years. The analysis can often be made simpler by regridding the data
to a NOLEAP calendar.

Ch4 Sec2.3. Dynamic grids and axes

The commands DEFINE AXIS and DEFINE GRID, described in the preceding section,
should be used when the grid or axis will be referenced more than once and/or shared
among several variables. In many cases it is more convenient to use dynamic (a.k.a.
"implicit") grids and axes. Two quick examples:

PLOT SIN(X[X=0:3.14:.1])

 – dynamically creates an axis from 0 to 3.14 by 0.1

SHADE SST[X=140E:160W:5, D=coads_climatology]

– dynamically creates a longitude axis extending from 140E to 160W by 5 degrees,
dynamically creates a grid which is like the grid upon which the variable SST is defined
but with the X axis replaced by the new dynamic axis, and automatically regrids to this
new grid.

Ch4 Sec2.3.1. Dynamic grids

It is often possible to avoid explicitly defining grids. This is useful in two common
situations:

● Situation 1

Regridding to specified axes without the need for defining the destination grid.

Syntax: G*=name@transform, where

 Example:

sst[GX=x10deg]

Suppose the variable SST is defined on a 2×2 degree grid in latitude/longitude (e.g.,
SET DATA coads_climatology). If we wish to regrid to 10-degree spacing in longitude
over a range from 175W to 75W we could use the commands

 DEFINE AXIS/X=175w:75w:10/UNITS=degrees x10deg
 LET sst10 = sst[GX=x10deg]

Several axes can be specified together when they are to be regridded similarly. For
example, instead of sst[GX=x10deg, GY=y10deg] one can use the more concise
 sst[GXY=x10deg]

Similarly, av_sst[GZ=@AVE, GT=@AVE] can be condensed to
av_sst[GZT=@AVE]

Ferret will dynamically create a grid equivalent to new_grid in

 DEFINE GRID/LIKE=sst/X=x10deg new_grid.

Figure 4_2 shows the effects of regridding the 2×2 degree COADS data to a 10-degree
spacing in longitude using (default) linear interpolation.

The command SHOW GRID SST10 will show the dynamically created grid. The names
of dynamic grids and axes will always be displayed in parentheses.

Note that the transformation method to be used for regridding may also be specified, so
LET SST10 = SST[GX=x10deg@ave] would create a 10-degree spaced result in which
each grid point was computed as the weighted sum of the source points that fell within
its grid box. The default method for regridding is linear interpolation.

• Situation 2

Automatic reconciliation of incompatible grid shapes

Syntax: G=name@transform

 where

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig02.gif

name – The name of a grid or of another variable defined on the desired
grid

@transform – The (optional) name of a regridding transform

Example:

 VAR1[g=VAR2]

If two variables are defined on grids that are mutually non-conformable because axes
exist in one grid but do not exist (are NORMAL) in another, Ferret will now create a
dynamic grid to resolve the non-conformabilities. This means that an expression of the
form VAR1[G=VAR2] will be meaningful as long as the grid domains overlap.

For example, TEMP[d=levitus_climatology] is defined on an XYZ (time-independent)
grid whereas SST[d=coads_climatology] is defined on an XYT grid. So to evaluate the
expression SST[d=coads_climatology,G=TEMP[d=levitus_climatology]] Ferret will
create a dynamic intermediate grid equivalent to

 DEFINE GRID/LIKE=sst[D=coads_climatology]/X=temp/Y=temp

so that regridding occurs on the X and Y axes but the original grid structure is
maintained with respect to depth and time.

The command SHOW GRID will reveal the resulting dynamically created grid
structure.

Ch4 Sec2.3.2. Dynamic axes

The syntax "GX=lo:hi:delta" can be used in square brackets modifying a variable name
to indicate the dynamic creation of an axis with the indicated range and spacing and the
immediate regridding of the variable to a grid containing that axis. For example,
SST[GX=175W:75W:10] will create a dynamic axis of 10-degree regular point spacing,

will create a dynamic grid incorporating this axis (see previous section), and will regrid
the variable SST to this grid.

Similarly, by referring to the grid indices rather than their world coordinates, the
expression SST[GX=1:100:5] will create a dynamic axis that subsamples every 5th
longitude point from SST. In this case the points of the resulting axis may be irregularly
spaced if the points of the original axis were also irregular.

As with the dynamic regridding described above, transformations can be specified to
indicate the regridding technique. Thus SST[GX=1:100:5@AVE] will use averaging
instead of the default linear interpolation to perform the regridding.

As a notational convenience the "G" may be dropped when referring to dynamic axes.
Thus SST[X=175W:75W:10] is equivalent to SST[GX=175W:75W:10] and
SST[I=1:100:5@AVE] is equivalent to SST[GX=1:100:5@AVE]. When using this
notational convenience keep in mind that a regridding is taking place, so the
transformation applied (if any) must be a regridding transformation (see SHOW
TRANSFORMS in the command reference section, p. 410).

The lower plot of Figure 4_2 illustrates the effect of dynamic axes in the command

SHADE SST[GX=175W:75W:10]

Ch4 Sec2.3.3. Dynamic pseudo-variables

The same notation used for dynamic axes may also be applied to pseudo-variables
providing a simple means for creating arrays of values. For example, X[GX=0.2:1:0.2]
is a vector of 5 points from 0.2 to 1 at a regular spacing of 0.2 units. The vector is
oriented in the X direction.

An example of using such a vector is (Figure 4_3)

PLOT SIN(X[GX=0:3.14:.1])

Note that when the lo:high:delta notation is applied to T or L expressed as calendar
dates the units of the delta value will be hours. For example, L[GT=1-jan-1980:1-feb-
1980:24] is the integers 1 to 32 defined on an axis of 32 days, 24 hours apart.

As a notational convenience the "G" may be dropped when referring to dynamic pseudo-
variables. Thus X[X=0.2:1:0.2] is equivalent to X[GX=0.2:1:0.2].

See also the discussion of grids for pseudo-variables in section 3.1.3, p. 60.

Ch4 Sec2.4. Regridding

Syntax:

 var[G=name] for (default) linear interpolation to new grid

or

 var[G=name@trn] to regrid all axes using transform "trn" (see below)

or

 var[G=name,GX=@TRN,GY=@TRN,...] to control regridding transformations
along each axis separately

where

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig03.gif

var is the name of the variable to be regridded (e.g., temp, u, tau, ...)

name is the name of a variable (e.g., temp[G=u]) or the name of a grid (e.g.,
temp[G=gu01])

trn is the name of a special transformation (e.g., @AVE, @ASN, @LIN)

The syntax var[G=name,GX=@TRN,GY=@TRN,...] can be compressed when
 specifying that several axes are to be regridded similarly. For example, instead of
 var[GX=sst, GY=SST]
one can now use the more concise
 var[GXY=sst]

Similarly, if using a regridding transformation,
 var[GZ=@AVE, GT=@AVE]
can be condensed to
 var[GZT=@AVE]

Note that in Ferret Version 5 and after when the limits of a variable are unspecified
 v2[g=v1] will default to the full extent of the v1 grid. Previously, it would become the
size of whatever region of the v2 native grid overlapped with the v1 grid.

The Ferret distribution provides a demonstration of many regridding techniques:

yes? GO regridding_demo

Regridding is essential for algebraic operations that combine variables on incompatible
grids. Ferret provides the commands DEFINE AXIS and DEFINE GRID to assist with
the creation of arbitrary grids.

The result grid of a regridding operation does not necessarily match exactly the
destination grid requested. For example, suppose the native grid of variable TEMP3D

(Ocean Temperature) is 1 degree resolution in X and Y and 50 meter spacing in Z. If the
syntax "[G=sst]" is used to request regridding to the grid of variable SST (Sea Surface
Temperature), which is 2 degree resolution in X and Y, but normal to Z, then the
resulting grid will be generated dynamically— inheriting X and Y axes from SST as
requested, but retaining the Z axis of TEMP3D.

Examples

1) Suppose the variables u and temp are on staggered X, Y, and Z axes but share the
same T axis. Then the two variables can be multiplied together on the axes (grid) of the
u variable as follows:

yes? CONTOUR u * temp[G=u]

This will regrid temp onto the u grid by multi-axis linear interpolation before
performing the multiplication.

2) Two variables, v1 and v2, are defined on distinct 4-dimensional grids (X, Y, Z, and
T axes). The T axes of the two grids are identical but the X, Y, and Z axes all differ
between the two variables. (This is often the case in numerical model outputs.)

To obtain the variable v1 on its original Z (depth) locations but regridded in the XY
plane to the grid locations of the variable v2, define a new grid (say, named "new_grid")
that has the X and Y axes of v2 but the Z axis of v1.

yes? DEFINE GRID/LIKE=v2/Z=v1 new_grid !define new grid
yes? LIST/X=160E:140W/Y=5S:5N v1[G=new_grid] !request regridding

3) In this example we look at temperature data from two data sets.
levitus_climatology, an annual climatology, has the variable "temp" on an XYZ grid
which is 1×1 degree in XY, and coads_climatology, a monthly climatology, has the
variable "sst" on an XYT grid which is 2×2 degrees in XY. Suppose we wish to look at
the sea surface temperatures in January at the higher XY resolution of the Levitus data.

yes? SET DATA levitus_climatology
yes? SET DATA coads_climatology
yes? SET REGION/L=1/Z=0
yes? !get the name of the grid on which temp is defined
yes? SHOW GRID temp[D=levitus_climatology] ! —> "Glevitr1"
yes? DEFINE GRID/X=glevitr1/Y=glevitr1/Z=sst/L=sst glevitus_xy
yes? LIST/X=150E:155E/Y=0:5N sst[G=glevitus_xy]

Ch4 Sec2.4.1. Regridding transformations

Ferret supports several regridding transformations. Use the SHOW
TRANSFORMATIONS command to obtain a list of the supported transformations
from Ferret. The choice of regridding transformation determines the computation by
which data from the source grid determine the values on the destination grid.

Regridding transformations provide a means to perform a given calculation over a
limited span of coordinates and repeat that calculation for a series of contiguous spans.
For example, if we wish to compute the variance of the variable SST over 10-degree
longitude range from 180 to 170W we could use the syntax
sst[X=180:170w@VAR]. Now, if we wish to perform the same operation 10 times in
10-degree wide bands from 180 to 80W we could instead use G=@VAR regridding as in
(see Dynamic Grids, p. 132, for an explanation of the "GX=" syntax):

DEFINE AXIS/X=175w:85w:10/UNITS=degrees ×10deg
LET sst10 = sst[GX=x10deg@VAR]

The regridding transformations are:

@LIN—linear interpolation (the default if no transform is specified)

Performs regridding by multi-axis linear interpolation.

@AVE—averaging

Computes the length-weighted average of all points on the source grid that lie partly or
completely within each grid cell of the destination grid.

Note: When @AVE is applied simultaneously to the X and Y axes, where X and Y are
longitude and latitude, respectively, an area-weighted average (weighted by
cos(latitude)) is used. The @AVE transformation is unique in this respect. In multiple
axis applications other than X and Y @AVE will be applied sequentially to the axes,
computing the "average of the average." This may not be the desired weighting scheme
in some cases. See @VAR below for an example.

@ASN—(blind) association

Associates by subscript (blindly) the points from the source grid onto destination
coordinates.

@VAR

Computes the variance of the points from the source grid that fall within each
destination grid cell. This is a length-weighted computation like the @AVE
transformation.

Note: This transformation is suitable for regridding only in a single axis. When applied
simultaneously to two axes, for example, it will compute the variance of the variance.
For example, V[gx=130E:80W:10@VAR, gy=205:20W:10@VAR] is equivalent to
tmp[X=130E:80W:10@VAR] where tmp=V[y=20S:20N:10@VAR].

@NGD

Compute the number of points from the source grid that fall within each destination grid
cell. Note that the results of this calculation need not be integers—this is a length-
weighted computation like the @AVE transformation. It is common for a grid cell on
the source grid to span the boundary between grid cells on the destination grid, thereby
contributing a fraction of its weight to multiple destination grid cells.

Note: This transformation is suitable only for regridding on a single axis. When applied
simultaneously to two axes, for example, it will compute a constant. See @VAR for an
example.

@NRST

Nearest coordinate regridding VAR[GX=newaxis@NRST] chooses the value from the
source axis coordinate closest to the destination axis. If source coordinates above and
below are equally close to a destination coordinate the value at the lower coordinate
will be chosen. (This is most useful for regridding between axes whose coordinate
values are very close, though not exactly matched -- e.g. between equally and unequally
spaced monthly time axes.)

@SUM

Computes the length-weighted sum of the points from the source grid that fall within
each destination grid cell. This is a length-weighted computation like the @AVE
transformation.

@MIN

Finds the minimum value of those points from the source grid that lie within each
destination grid cell. Note that this is NOT a weighted calculation; the destination grid
cell that "owns" a source point is determined entirely from the coordinate location of the
source point, not from the limits of the source grid cell.

 (As of Ferret V5.1) If a point on the source axis lies exactly on the boundary between
grid cells on the destination axis it will be included in the calculations for the higher
indexed cell on the destination axis. If a point on the source axis lies exactly on the
upper cell boundary of the highest point on the destination axis, then it will be included
in the calculations for that highest destination grid cell.

If you have data on a single point axis and you wish to embed it in a larger axis range
you can achieve this by using either the G=@MIN or G=@MAX. For example,

yes? define axis/x=163e/npoints=1 x1pt
yes? let var_1pt = randu(x[gx=x1pt]) ! a random value at a single
coordinate
yes? list var_1pt
 RANDU(X[GX=X1PT])
 LONGITUDE: 163E
 0.4914
yes? define axis/x=161e:165e:1 x5pt
yes? list var_1pt[gx=x5pt@max] ! same value embedded within 5
point axis
 RANDU(X[GX=X1PT])

 regrid: 1 deg on X@MAX
161E / 1:
162E / 2:
163E / 3: 0.4914
164E / 4:
165E / 5:

@MAX

Finds the maximum value of those points from the source grid that lie within each
destination grid cell. Note that this is NOT a weighted calculation; the destination grid
cell that "owns" a source point is determined entirely from the coordinate location of the
source point, not from the limits of the source grid cell..

 (As of Ferret V5.1) If a point on the source axis lies exactly on the boundary between
grid cells on the destination axis it will be included in the calculations for the higher
indexed cell on the destination axis. If a point on the source axis lies exactly on the
upper cell boundary of the highest point on the destination axis, then it will be included
in the calculations for that highest destination grid cell.

The @MAX transformation is useful as a mechanism to perform regridding between
two axes that do not quite match. A common example would be to regrid between two
monthly axes one of which has points located at the 15th of each month and the other
having points exactly at mid-month. These Ferret commands illustrate the example
using a 5-month axis in 1993:

! define axes for 15th of month and mid-month

yes? DEFINE AXIS/UNIT=DAYS/T0=1-JAN-1900 month_15 =
DAYS1900(1993,I[I1:5], 15)

yes? DEFINE AXIS/UNIT=DAYS/T0=1-JAN-1900/EDGES month_mid =
 DAYS1900(1993,I[I=1:6], 1)
yes? let my_var = L[gt=month_15
yes? list my_var
 L[GT=MONTH_15]

 15-JAN-1993 00 / 1: 1.000
 15-FEB-1993 00 / 2: 2.000
 15-MAR-1993 00 / 3: 3.000

 15-APR-1993 00 / 4: 4.000
 15-MAY-1993 00 / 5: 5.000

yes? list my_var[gt=month_mid]
 L[GT=MONTH_15]

 regrid: on T
 16-JAN-1993 12 / 1: 1.048
 15-FEB-1993 00 / 2: 2.000
 16-MAR-1993 12 / 3: 3.048
 16-APR-1993 00 / 4: 4.033
 16-MAY-1993 12 / 5: ! unable to interpolate

yes? list my_var[gt=month_mid@max]
 L[GT=MONTH_15]
 regrid: on T@MAX

 16-JAN-1993 12 / 1: 1.000
 15-FEB-1993 00 / 2: 2.000
 16-MAR-1993 12 / 3: 3.000
 16-APR-1993 00 / 4: 4.000
 16-MAY-1993 12 / 5: 5.000

@XACT

Regridding with G=@XACT (or GX=@XACT, etc.) is a request to transfer values from
a source grid to a destination grid only at those positions where there is an exact
coordinate match between the source and destination axis points on the axis in question.
Other destination points will be set to "missing". This transformation is especially useful
for taking multiple in-situ data profiles, such as oceanographic cast data, and regridding
them onto a regular (sparse) grid. For example: grep

yes? LET xcoarse = sin(x[x=0:20:10])
yes? LIST xcoarse
 SIN(X[X=0:20:10])
 0 / 1: 0.0000
 10 / 2: -0.5440
 20 / 3: 0.9129
 yes? DEFINE AXIS/X=0:20:5 xfine

 yes? LIST xcoarse[gx=xfine@XACT]
 SIN(X[X=0:20:10])
 regrid: 5 delta on X@XACT
 0 / 1: 0.0000
 5 / 2:
 10 / 3: -0.5440
 15 / 4:
 20 / 5: 0.9129

@MOD

Creates climatologies from time series by regridding to a time series axis with a modulo
regridding transformation. See the section on Modulo Regridding (p. 143) for details.

Examples

1) Let variable temp be defined on a grid with points spaced regularly at 1-degree
intervals in both longitude and latitude (X and Y). Let grid "g10" possess points spaced
regularly at 10-degree intervals in both X and Y.

yes? PLOT temp[G=g10] ! uses linear interpolation (@LIN)
yes? PLOT temp[G=g10@AVE] ! area-averages 10x10 degrees of
source\
 points into each destination point.
yes? PLOT temp[G=g10,GX=@AVE] ! averages 10 degrees of longitude
but\
 interpolates (@LIN) in Y.

2) @ASN has the effect of bypassing Ferret's protections against misrepresenting data
(Figure 4_4).

yes? SET DATA levitus_climatology
yes? SET REGION/X=180/Y=0 ! true profile
yes? PLOT/Z=0:5000 temp
yes? DEFINE AXIS/DEPTH /Z=100:2000:100 zfalse
yes? DEFINE GRID/LIKE=temp /Z=zfalse gfalse ! false profile
yes? PLOT/Z=0:5000/OVER temp[G=gfalse@ASN]

Ch4 Sec2.5. Modulo regridding

Ferret can create climatologies from time series simply by regridding to a climatological
axis with a modulo regridding transformation. For example, if the axis named
month_reg is a 12-point monthly climatological (modulo) axis then the expression

LET sst_climatology = sst[D=coads,GT=month_reg@MOD]

is a 12-month climatology computed by averaging the full time domain of the input
variable (576 points for coads) modulo fashion into the 12 points of the climatological
axis.

Ferret has three pre-defined climatological axes: seasonal_reg (Feb, May, Aug, Nov),

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig04.gif

month_reg (middle of every month), and month_irreg (15th of every month). In
addition, there is an FAQ that describes how to create a daily climatological series, How
do I compute a daily climatology for a time series? The analysis of multi-year daily data
is often awkward, because the length of the year changes for leap years. The analysis
can often be made simpler by regridding the data to a NOLEAP calendar.

yes? USE climatological_axes
*** NOTE: regarding ... climatological_axes.cdf
*** NOTE: Climatological axes SEASONAL_REG, MONTH_REG, and
MONTH_IRREG
 defined
yes? CANCEL DATA climatological_axes ! the axes are still defined

To generate a climatology based on a restricted range of input data simply define an
intermediate variable with the desired points. For example, a monthly climatological
time series based on data from the 1960s could be computed using

LET sst_1960s = sst[D=coads,T=1-jan-1960:31-dec-1969]
PLOT sst_1960s[GT=month_reg@MOD]

In a similar fashion intermediate variables can be defined that mask out certain input
points.

This example shows the entire sequence necessary to generate a plot of climatological
SST at 40N, 40W based on the January 1982 to December 1992 Fleet Numerical wind
data set. (Figure 4_5).

http://ferret.pmel.noaa.gov/Ferret/FAQ/analysis/daily_climatology.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/analysis/daily_climatology.html

! use the predefined climatological axes
USE climatological_axes
CANCEL DATA climatological_axes

! use the Fleet Numerical winds
SET DATA monthly_navy_winds

! plot the raw data (top figure)
SET REGION/X=40w/Y=40n
plot uwnd

! plot the 12 month climatology (middle figure)
LET uwnd_clim = uwnd[GT=month_reg@MOD]
PLOT uwnd_clim

! since uwnd_clim is on a climatological axis
! Ferret can also plot it on the calendar axis with the raw data
PLOT/T=16-jan-1982:17-dec-1992 uwnd,uwnd_clim

In many cases the volume of input data needed to perform climatological calculations is
very large. In the example above the command

CONTOUR/X=0:360/Y=90s:90n sst_climatology[L=1]

to plot January from the climatology would require Nx*Ny*Nt=72*72*576=3
Megawords of data. Such calculations may be too large to fit into memory. However, if

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig05.gif

the region is fully specified (as shown for the X and Y limits in the example) Ferret's
internal memory manager will break up the calculation as needed to produce the result.
(See Memory Use in the chapter "Computing Environment", p. 237, for further details.)

Unlike other transformations and regridding, modulo regridding is performed as an
unweighted average: each non-missing source point contributes 100% of its weight to
the destination grid box within which it falls. If the source and destination axes are not
properly aligned this can lead to apparent shifts in the data. For example, if a monthly
time series has data points at the first of each month and a climatological axis is defined
at midmonths, then unweighted modulo averaging will lead to an apparent 1/2-month
shift. To avoid situations of this type simply regrid to the climatological axis using
linear interpolation prior to the modulo regridding.

Here is an example that illustrates the situation and the use of linear interpolation to
repair it. (Figure 4_6).

! define test_var, an illustrative variable with 1 year periodicity
! Note: test_var points are at the **beginnings** of months
DEFINE AXIS/T=1-jan-1970:1-jan-1974:`365.25/12`/UNITS=days t10years
DEFINE GRID/T=t10years gg
LET test_var = SIN(L[G=gg]*2*3.14/12)

! plot 4 years of the cycle
PLOT test_var

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig06.gif

! define climatological axes at the midpoints of months
USE climatological_axes
CANC DATA climatological_axes

! notice that modulo regridding appears to shift the data
! (due to mis-aligned source and destination axes) (top figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var[GT=month_reg@MOD]

! to avoid the shift we can first regrid test_var to mid-month
! points using linear interpolation (the default regridding method)
! notice that the function test_var is largely unchanged by this
LET test_var_centered = test_var[GT=month_reg]
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered

! finally perform a modulo regridding on well-aligned data
! notice that the shift is gone (bottom figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered[GT=month_reg]

Ch4 Sec2.5.1. Modulo regridding statistics

In addition to the modulo averaging calculation performed by @MOD Ferret provides
other statistics of the regridding. All modulo regridding calculations are unweighted as
discussed under @MOD.

@MODVAR

the variance of source points within each destination grid box (SUM(var-varbar)^2)/(n-
1))

@MODSUM

the sum of the source points within each destination grid box

@MODNGD

the number of source points contributing to each destination grid box

@MODMIN

the minimum value of the source points contributing to each destination grid box

@MODMAX

the maximum value of the source points contributing to each destination grid box

Ch4 Sec3. REGIONS

The region in space and time where expressions are evaluated may be specified in 3
different ways:

1) with the command SET REGION

2) with qualifiers to the command name (slash-delimited)

3) with qualifiers to variable names (in square brackets, comma-delimited)

If SET REGION is used, Ferret remembers the region as the default context for future
commands, whereas a qualifier to a command name specifies the region for that
command only, and a qualifier to a variable name specifies the region for that variable
and command only.

Regions may be manipulated using DEFINE REGION, SET REGION, @ notation, and
CANCEL REGION. The Commands Reference section of this manual covers all of
these topics.

Region information is normally specified in the following form:

 QUAL=val or
 QUAL=lo_val:hi_val or
 QUAL=val@transform (as a variable qualifier only) or
 QUAL=lo_val:hi_val@transform (as a variable qualifier only)

When the region for an axis is specified as a single value (instead of a range) Ferret, by
default, selects the grid point of the grid box containing this value. The Ferret mode

"interpolate" can control this behavior. See command SET MODE INTERPOLATE in
Commands Reference, p. 384.

Examples: Regions

Examples of valid region specifications.

1) Fully specify the region in an XY plane with the first vertical (Z) level and time
27739.

yes? SET REGION/X=140E:160W/Y=10S:20N/K=1/T=27739

2) Contour vertical heat advection within whatever region is the current default
(previously set with SET REGION).

yes? CONTOUR qadz

3) Define, modify and set a named region and then modify with delta notation.

yes? DEFINE/REGION/Y=5S:5N YT !define region YT to be 5S:5N
yes? DEFINE REGION/DY=-1:+1 YT !modify region YT to be 6S:6N
yes? SET REGION/@YT !set current region to YT
yes? SET REGION/DY=-1:+1 !modify current region to
7S:7N

4) List meridional currents calculated by averaging values between the surface and a
depth of 50 m.

yes? LIST v[Z=0:50@AVE]

5) Equivalent to v[Z=10] - v[Z=0:100@AVE], the anomaly at z=10 between v
and the 0 to 100 meter depth average of v.

yes? LIST/Z=10 v - v[Z=0:100@AVE]

Ch4 Sec3.1. Latitude

Specify latitude or a latitude range with the qualifier Y or J. Specifications using J are
integers between 1 and the number of points on the Y axis. Specifications using Y are in
the units of the Y axis.

The units may be examined with SHOW GRID/Y. If the Y axis units are degrees of
latitude then the Y positions may be specified as numbers followed by the letters "N" or
"S".

Examples

yes? CONTOUR temp[Y=15S:10N]
yes? LIST/J=50 u

Ch4 Sec3.2. Longitude

Specify longitude or a longitude range with the qualifier X or I. Specifications using I
are integers between 1 and the number of points on the X axis. Specifications using X
are in the units of the X axis.

The units may be examined with SHOW GRID/X. If the units are degrees, then X
values may be given as numbers followed by "W" or "E" (e.g., 160E, 110.5W) or as
values between 0 and 360 with Greenwich at 0 increasing eastward. Note: If the X axis
is "modulo" then it is sometimes desirable to use X greater than 360.

Examples

yes? CONTOUR temp[Y=160E:140W]
yes? LIST/I=100 u
yes? SHADE/X=100:460 temp !360 degrees centered at 100W

See the chapter "Grids and Regins", section "Modulo Axes" (p. 151), for help with globe-
encircling axes.

Ch4 Sec3.3. Depth

Specify depth or a depth range with the qualifier Z or K. Specifications using K are
integers between 1 and the number of points on the Z axis. Specifications using Z are in
the units of the Z axis.

The units may be examined with SHOW GRID/Z.

Examples

yes? CONTOUR temp[Z=0:100]
yes? LIST/K=3 u

Ch4 Sec3.4. Time

Specify time or a time range with the qualifier T or L. Specifications using L are
integers between 1 and the number of points on the T axis. Specifications using T may
refer to calendar dates or to the time step units in which the time axis of the data set is
defined.

Calendar date/time values are entered in the format dd-mmm-yyyy:hh:mm:ss, for
example 14-FEB-1988:12:30:00. At a minimum the string must contain day, month, and
year. If the string contains any colons it must be enclosed in quotation marks to
differentiate from colons used to designate a range. If a time increment is specified with
the repeat command given in calendar format (e.g., REPEAT/T="1-JAN-1982":"15-
JAN-1982":6) it is interpreted as hours always. Calendar dates in the years 0000 and
0001 are regarded as year-independent dates (suitable for climatological data). Ferret
cannot work with years larger than year 9999.

SHOW GRID/T can be used to display time step values. (Units may vary between data
sets.) The commands SET MODE CALENDAR and CANCEL MODE CALENDAR
can be used to view date strings or time steps, respectively.

Examples

yes? LIST/T="1-JAN-1982:13:50":"15-FEB-1982" density

yes? CONTOUR temp[T=27740:30000]
yes? LIST/L=90 u

See the section in this chapter on "Modulo Axes" (p. 151) for help with climatological
axes.

Ch4 Sec3.5. Delta

The notation q=lo:hi:delta (e.g., Y=20S:20N:5) specifies that the data in the requested
range is regularly subsampled at interval "delta."

This notation is valid only for the REPEAT, SHOW GRID, and DEFINE AXIS
commands, and the qualifiers /HLIMITS and /VLIMITS used in action commands with
graphical output.

It can also be used in square brackets when specifying variable context:

yes? LIST temp[l=40:90:5]

(but this is NOT allowed: LIST/L=40:90:5 temp)

Ch4 Sec3.6. @ notation

Regions may be named and referred to using the syntax "@name". Some commonly
used regions are predefined. See commands SET REGION (p. 390) and DEFINE
REGION (p. 321) in the Commands Reference section for further information.

If a region is specified using a combination of "@" notation and explicit axis limits the
explicit axis limits will be evaluated after the "@" specification, possibly superseding
the "@" limits.

Note: It is not advised to use the @notation inside of variable definitions, as
redefinitions of the named region can cause code errors that lead to wrong results.

Using the @ notation only sets/alters the axis limits specified in the named region. For
example, suppose that region "XY" is defined for the X and Y axes, but not for the Z
and T axes. Then

yes? SET REGION/@XY

modifies only X and Y limits. BUT,

yes? SET REGION XY

modifies all axes—X and Y to the limits specified by XY, and Z and T to unspecified
(even if they were previously specified).

Examples

1) Contour the 25th time step of temperature data at depth 10 within region T, the
"Tropical Pacific."

yes? CONTOUR/@T/Z=10/L=25 temp

2) Produce a contour plot over region W, the "Whole Pacific Ocean," in the XY plane
(the variable to be contoured as well as the depth and time will be inferred from the
 current context).

yes? CONTOUR/@W var1

3) Set the default region to "T", the Tropical Pacific Ocean (latitude 23.5S to 23.5N).

yes? SET REGION/@T

4) Define a region and then supersede with an axis limit specification.

yes? DEFINE REGION/X=180:140W/Y=2S:2N/Z=5 BOX1
yes? SET REGION/@BOX1/Z=15 !replace Z

Pre-defined regions

As a convenience in the analysis of the Tropical Pacific Ocean the following regions are
pre-defined:

Name Region Latitude Longitude

T Tropical Pacific 23.5S:23.5N 130E:70W

N Narrow Pacific 10.0S:10.0N 130E:70W

W Whole Pacific 30.0S:50.0N 130E:70W

These may be redefined by the user for the duration of a Ferret session or until the
definitions are canceled.

Ch4 Sec3.7. Modulo axes

Some axes are inherently "modulo," indicating that the axis wraps around—the first
point immediately following the last.

To determine if an axis is modulo use SHOW AXIS or SHOW GRID. A letter "m"
following the number of points in the axis indicates a modulo axis. The command
SHOW GRID qualified by the appropriate axis limits can be used to examine any part of
the axis—including points beyond the nominal length of the axis. The commands SET
AXIS/MODULO and CANCEL AXIS/MODULO can be used to control this feature on
an axis-by-axis basis. Starting with Ferret version5.5, longitude axes which span 360
degrees or less, and climatological time axes are always detected as modulo, unless
Ferret is specifically directed that the axis is NOT modulo, e.g. by a CANCEL
AXIS/MODULO command.

Example

yes? SET DATA coads_climatology
yes? SHOW GRID/I=180:183 sst !range request beyond last point
 GRID COADS1
 name axis # pts start end
 COADSX LONGITUDE 180mr 21E 19E(379)

 [text omitted]
 I X BOX_SIZ
 180> 19E(379) 2
 181> 21E(381) 2
 182> 23E(383) 2
 183> 25E(385) 2

The most common uses of modulo axes are:

1) As longitude axes for globe-encircling data sets. This allows any starting and any
ending longitudes to be used, for example, X=140E:140E indicates the entire earth with
data beginning and ending at 140E.

2) As time axes for climatological data. By this device the time axis appears to extend
from 0 to infinity and the climatological data can be referred to at any point in time. This
facilitates comparisons with data sets at fixed times.

Ch4 Sec3.7.1. Subspan Modulo Axes

Ferret V5.5 introduces the concept of a "sub-span modulo axis" -- an axis where the
range is a sub-range of a fullmodulo cycle. As of V5.5, longitude axes and
climatological time axes are always detected as modulo, or as sub-span modulo when
appropriate, unless Ferret is specifically directed that the axis is NOT modulo, e.g. by a
CANCEL AXIS/MODULO command. If the user does not specify the modulo length,
it is set to 360 degrees for a longitude axis, or a year for a time axis. Time axes of lenght
less than or equal to one year, and starting in year 0000 or 0001 are taken to be
climatological axes.

The modulo length of an axis defined on the Ferret command line is set with an
argument to the MODULO qualifier, or with an argument to the NetCDF modulo
attribute. Here is an example showing an axis defined explicitly as a modulo axis, and
another which is modulo by default.

yes? DEFINE AXIS/MODULO=100/x=41:55:1 xax_subspan
yes? DEFINE AXIS/X=100:300:10/UNITS=degrees_longitude xax_lonspan

The output of SHOW AXIS includes the modulo length and span of the axis:

yes? show axis xax*

 name axis # pts start end
XAX_SUBSPAN 6mr 41 46
 Axis span (to cell edges) = 6 (modulo length = 100)
XAX_LONSPAN LONGITUDE 21mr 100E 60W
 Axis span (to cell edges) = 210 (modulo length = 360)

In NetCDF output files you will now see the modulo attribute taking a value. Continuing
the example above, we write some variables using the axes to a file and use ncdump to
show the modulo attribute in these files.

yes? LET v1 = X[GX=xax_subspan] +10
yes? LET v2 = SIN(X[GX=xax_lonspan])
yes? SAVE/FILE=test_subspan_modulo.nc v1, v2
yes? SPAWN ncdump -c test_subspan_modulo.nc

netcdf test_subspan_modulo {
dimensions:
 XAX_SUBSPAN = 15 ;
 XAX_LONSPAN = 21 ;
variables:
 double XAX_SUBSPAN(XAX_SUBSPAN) ;
 XAX_SUBSPAN:modulo = 100. ;
 XAX_SUBSPAN:point_spacing = "even" ;
 XAX_SUBSPAN:AXIS = "X" ;
 float V1(XAX_SUBSPAN) ;
 V1:missing_value = -1.e+34f ;
 V1:_FillValue = -1.e+34f ;
 V1:long_name = "X[GX=XAX_SUBSPAN] + 10" ;
 double XAX_LONSPAN(XAX_LONSPAN) ;
 XAX_LONSPAN:units = "degrees_east" ;
 XAX_LONSPAN:modulo = 360. ;
 XAX_LONSPAN:point_spacing = "even" ;
 XAX_LONSPAN:AXIS = "X" ;
 float V2(XAX_LONSPAN) ;
 V2:missing_value = -1.e+34f ;
 V2:_FillValue = -1.e+34f ;
 V2:long_name = "SIN(X[GX=XAX_LONSPAN])" ;

// global attributes:
 :history = "FERRET V5.50 15-Jan-03" ;
data:

XAX_SUBSPAN = 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55 ;

XAX_LONSPAN = 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200,
210,
 220, 230, 240, 250, 260, 270, 280, 290, 300 ;
}

The importance of the sub-span modulo axes is to take the first of two steps that will
make it possible for users largely to ignore differences in encodings of longitude and
climatological time -- e.g. the blending of data in plots and analyses where the data
come from data sets that are encoded variously as -180:180, 0:360, etc. Thus, for
example, in V5.5 you can refer to my_subspan_var[g=another_var] and get a
meaningful answer as long as the grids occupy the same region on the globe, regardless
of longitude encoding. (The second step, for a future release, will address the longitude
encoding of scattered data.)

Example:

Suppose we have data on an axis that was defined as follows

yes? DEFINE AXIS/X=520:550:1/UNITS=degrees xax

and supposet we want to overlay it on a map showing the regional topography.

yes? USE etopo05
yes? SHOW GRID rose ! We will want the names of the axes
 GRID GOZ1
name axis # pts start end
ETOPO05_X LONGITUDE 4320mr 0E 0.079987W
ETOPO05_Y LATITUDE 2161 r 90S 90N
normal Z
normal T

yes? SET REGION W
yes? SHADE/PAL=land_sea rose[d=1] ! draw the shade plot

yes? USE my_data.nc ! The dataset containing the x=520:550 data
yes? SHOW AXIS xsub
name axis # pts start end
XSUB LONGITUDE 31mr 160E(520) 170W(550)
 Axis span (to cell edges) = 31 (modulo length = 360)

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch4_fig07.gif

yes? SHADE/OVER/PAL=greyscale a[GX=etopo05_x,GY=etopo05_y]

There is an implied void point in a sub-span modulo axis that fills the gap between the
end of the axis and the start of the next modulo cycle. The data value at this point will
always be the missing value flag (except for pseudo-variables such as
"X[g=my_subspan_axis]"). Transformations such as smoothers do not operate across the
void point.

In NetCDF files, the modulo attribute is specified as follows:

1) Specify the modulo length of the axis with the attribute modulo = <value>, e.g.
var:modulo=100;

2) The modulo attribute from previous NetCDF files remains unchanged: modulo = "
". To set a modulo axis of standard length (360 degrees or one year). The modulo length
is 360 degrees for a longitude axis, or one year for a climatological time axis.

3) The attribute value modulo = "FALSE", modulo = "NO", modulo="OFF" tells
Ferret that the axis is not to be treated as modulo

Ch4 Sec3.8. Region Conflicts

Conflicting region information can be given to Ferret in obvious ways such as

LIST/I=1:3 I[I=1:10]

in which it is not clear if the request is for 10 points or for 3, or in subtler, disguised
ways such as

LET A = I[I=1:10] LIST/I=1:3 A

In both examples Ferret would resolve the conflict by listing just the three values I=1:3.

Internally, Ferret uses the region closest to the variable to perform the calculation.
Thus, in both of the examples above Ferret will perform the calculation on I=1:10, since
the "[I=1:10]" directly modifies the variable name. If Ferret sees conflicting regions it

attempts to use the regions further from the variable to clip the calculation. Thus 10
points are clipped to 3 in the above examples.

Unresolvable conflicts such as

LIST/I=11:13 I[I=1:10]

will result in a warning message that invalid limits have been ignored.

Ch4 Sec4. FERRET PROGRAM LIMITS

There are a number of hard limits in the Ferret code: the number of variables that may
be defined, the number of datasets open at a time, the length of certain strings, etc.
 Some of these limits have been relaxed with successive Ferret versions as computing
resources have expanded. Here are the limits as of Ferret version 5.41:

Parameter Name Value Description

memsize 6.4 Initial size of memory at startup, in Megawords. You
can always change the memory at startup with the -
memsize option (p. 6), or during a Ferret session with
the SET MEMORY command. SHOW MEMOR gives
the current size of the memory cache.

cmnd_buff_len

2048 Length of the command buffer. You can make long
commands more readable using the continuation
 character backslash \ (p. 14)

Number of
arguments to go
scripts

99 Maximum number of arguments to a go script. Use the
syntax ($nn) or $nn in the script. (p. 25)

Length of arguments
to go scripts

511 Maximum length in characters of each argument to a go
script.

maxvars 2000 Maximum number of all variables defined by SET
DATA (including aliases USE and FILE)

max_uvars 2000 Maximum number of all user-defined variables (LET
var =)

maxezvars 100 Maximum number of variables that can be read from a
single delimited ASCII file, using SET
DATA/FORMAT=DELIMITED (p. 372)

maxezfreefmtvars 20 Maximum number of variables that can be read in free
format from a single ASCII file, e.g. in SET
 DATA/EZ/VARIABLES="var1,var2"
 (p.375)

maxdsets 100 Maximum number of data sets simultaneously open (as
seen through SHOW DATA)

maxstepfiles 5000 Maximum number of files with time step data. These
are read via descriptor files (p. 37). This is a limit on the
cumulative sum of all files in all open multi-file data
sets.

s_filename 128 Maximum length of the filenames listed within
descriptor files (p. 266).

length of variable
names

128 Maximum length of all variable names.

length of label text 2048 Maximum length of labels.

max_grids 500 Maximum number of static grids (grids defined by
DEFINE GRID).

max_dyn_grids 1000 Total number of grids that can be defined at any time,
static and dynamic. Dynamic grids are created by
opening data sets and by implicit regridding operations
such as strides (e.g. var[i=1:100:10]), regridding
operations between grids of different dimensionality
(e.g. temp4d[g=sst]), and external functions that create
new grids (e.g. EOF_SPACE(A, F)) .

max_lines 1000 Maximum number of static axes. Static axes are axes
defined by DEFINE AXIS

max_dyn_lines 1500 Total number of axes, static and dynamic, thatcan be
defined. Dynamic axes are defined by opening data sets
and by implicit regridding operations such as strides
(e.g. var[i=1:100:10]), regridding operations between
grids or axes of different dimensionality (e.g.
temp4d[gx=sst]), and external functions that create new
grids (e.g. SAMPLEXY(sst, xpts, ypts))

maxlinestore 250000 Maximum number of coordinates in all irregular axes.
This is the sum of all the coordinates of irregular axes
currently defined via opening files and DEFINE AXIS,
and includes storage for the edges of the grid cells
defined by these axes. Coordinate storage may be
recovered with the CANCEL AXIS command.

abstract_line_dim 20480 Dimension of the default abstract axis for reading
ASCII data (p. 46). To read larger amounts of data,
explicitly define an axis or grid.

ef_max_args 9 Maximum number of arguments that may be passed to
an external function.

ef_max_work_arrays 9 Maximum number of work arrays defined by an
external function for use by that function.

spec_size 250 Maximum number of levels in a spectrum, or palette
file (.SPK) (p. 184)

pattern_num 50 Maximum number of patterns defined in a pattern file
(.PAT) (p. 345)

year Years in dates may take values from 0000 to 9999

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 5: ANIMATIONS AND gif IMAGES

Ch5 Sec1. OVERVIEW

There are two modes for animating in Ferret. One can animate "on the fly" in an
interactive sesion, or a sequence of Ferret plots can be stored and then animated. For
stored sequences of plots, each plot is stored as one frame in a movie file. Ferret stores
movie frames in Hierarchical Data Format (HDF), a format designed by the National
Center for Supercomputing Applications (NCSA). A movie file can then be displayed as
an animated sequence of frames with NCSA's xds—X Data Slice (not distributed with
Ferret; see the section in this chapter "Displaying an HDF movie" (p. 159), for details).
A series of gif images can also be animated, see Ch5 Sec1.2 below.

Ch5 Sec1.1. Animating on the fly

In a Ferret session, display an animation with the command,

yes? REPEAT/ANIMATE[/LOOP=n]

 to start an animation sequence. Given LOOP=n, the entire animation sequence will
repeat n times.

 Example:

yes? set data coads_climatology
yes? repeat/l=1:12/animate/loop=5 (shade sst; go fland)

NOTE: In order to properly display, it is necessary to have backing store enabled for the
Xserver.

Ch5 Sec1.2. Note on using whirlgif to make a movie

The following sections detail making movies with HDF, but another method has been

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5-Displaying_HDF

brought to our attention. An easy way to make movies from gif files generated by
Ferret is a public domain utility called whirlgif. The documentation indicates that it is
available for a variety of systems.

Whirlgif is extremely easy to use:

1. Make your gif files with a Ferret command like:

yes? REPEAT/J=1:36 (GO scriptfile `j`; FRAME/FILE=whirl-`j`.gif)

where the scriptfile uses the argument j to determine the plot characteristics. See
sections later in this chapter for more on the REPEAT command (p. 159) and creating
gif files (p. 162).

2. Make a file (for example call it whirlgif-infile) that consists of a list of the gif files
(including repeats if you want):

> more whirlgif-infile

 whirl-1.gif
 whirl-2.gif
…

This file can be as long as you want and may specify files more than once to repeat any
of the images if you wish.

3. From the unix command line use whirlgif to make the movie:

> whirlgif -o movie_filename.gif -i whirlgif-infile

That's it. Whirlgif simply concatenates the gif files with some connecting information
needed to do the animation. The resulting movie gif file is just about as large as the sum
of the input frames.

These show nicely on the web, or you can use xanim (under unix) to view locally.

Download whirlgif from http://www.msg.net/utility/whirlgif/
or the mirror site: http://www.danbbs.dk/~dino/whirlgif/index.html

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5_REPEAT
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5_creating_gifs
http://www.msg.net/utility/whirlgif/
http://www.danbbs.dk/~dino/whirlgif/index.html

which has extensive documentation. But we have found that it is a simple program that
works without much study.

Ch5 Sec2. CREATING AN HDF MOVIE

Creating a movie requires two steps:

1) designate an output file with SET MOVIE

2) generate a sequence of frames with REPEAT and FRAME

See commands SET MOVIE (p. 389), CANCEL MOVIE (p. 303), SHOW MOVIE (p.
409), FRAME (p. 331), and REPEAT (p. 360) in the Commands Reference section of
this manual.

Example: basic movie

yes? SET DATA coads_climatology !specify data set
yes? SET REGION/@W !specify Pacific Ocean
yes? LET/TITLE="SST Anomaly" SST_ANOM = SST - SST[L=1:12@AVE]
yes? REPEAT/L=1:12 (FILL sst_anom; FRAME/FILE=my_movie.mgm)
 !filled contour of sea surface\
 temp anomaly captured and\
 written to HDF file

Optionally, ".mgm" will be assigned to the movie file.

REPEAT executes its argument (in the above example, FILL) successively for each
timestep specified. REPEAT can have multiple arguments separated by semi-colons and
enclosed in parentheses.

FRAME is a stand-alone command, but also a qualifier for the graphical output
commands PLOT, CONTOUR, FILL (alias for CONTOUR/FILL), SHADE, VECTOR
and WIRE.

The saved animation frames are exactly the size and shape of the window from which
they are created. Thus a large window results in a larger, slower animation that demands

more disk space and memory to play back. The SET WINDOW/SIZE= command is
generally used to specify minimally acceptable frame size.

See section "Advanced Movie-making" (p. 159), for more examples.

Note that when making an HDF movie you should not start Ferret with the -unmapped
option.

Ch5 Sec3. DISPLAYING AN HDF MOVIE

Viewing a movie requires software which is not included with the Ferret distribution
(although in some cases we have made the binary available in Ferret's anonymous ftp
area). NCSA's X Data Slice reads HDF files and is available via anonymous ftp from
NCSA. It requires about 1.7Mb of disk space. NCSA's ftp server is

 ftp.ncsa.uiuc.edu login id is "anonymous", give your e-mail address as the
password

Consult the README files you will find there for instructions on obtaining X Data
Slice. Other utilities from NCSA can also be used for animations.

Ch5 Sec4. ADVANCED MOVIE-MAKING

Ch5 Sec4.1. REPEAT command

The REPEAT command is quite flexible. It allows you to repeat a sequence of
commands, not just a single command as in the basic example above. You can give the
GO command as an argument to REPEAT. The following examples demonstrate these
techniques.

Note: MODE VERIFY must be SET (this is the default state) for loop counting to
work.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5-Advanced_Movie

Example 1

Note the method at the start of this chapter for making movies from a sequence of gif
files and the whirlgif utility. (p.157)

Example 2

Here we give multiple arguments to REPEAT; note the semi-colon separation and the
parentheses. Note that FRAME, in this example, is used as a stand-alone command.

yes? REPEAT/L=1:12 (FILL SST; GO fland; FRAME/file=my_movie.mgm)

Example 3

In this example we use the REPEAT command to pan and zoom over a sea surface
temperature field.

SET DATA coads_climatology
SET REGION/L=1
SET REGION/X=120E:60W/Y=45S:45N
SHADE sst; GO fland

! ZOOM
REPEAT/K=1:5 (SET REGION/DX=+8:-8/DY=+8:-8; SHADE sst; GO fland;
FRAME)

! PAN
REPEAT/K=1:5 (SET REGION/DX=+5; SHADE/LEV=(20,30,.5) sst; FRAME)

Example 4

In this example the user calls setup_movie.jnl (text included below), title.jnl, which
creates a title frame, then repeats main_movie.jnl (text included below) for each time
step desired. Finally, the user adds a frame of credits at the end of the movie. Each of
the scripts would end with the FRAME command (except setup_movie). Using GO
scripts as arguments to REPEAT allows you to customize the plot with many
commands before finally issuing FRAME, as the text of main_movie.jnl below
demonstrates.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5_whirlgif

yes? ! make the movie
yes? GO setup_movie
yes? GO title
yes? REPEAT/L=1:12 GO main_movie
yes? GO credits

! Setup_movie.jnl
SET WINDOW/SIZE=.45/ASPECT=0.7
SET MOVIE/file=my_movie.mgm
SET DATA coads_climatology
SET REGION/X=130E:75W/Y=8S:8N
SET MODE CALENDAR:months
GO bold
PPL SHAKEY ,,.15,.2
PPL AXLEN 8.8,4.8

! Main_movie.jnl
FILL/SET_UP/LEVELS=(16,31,1) sst
PPL LABS; PPL TITLE
PPL FILL
LABEL 210,9.5,0,0,.22 @TRCOADS MONTHLY CLIMATOLOGY (1946-1989)
LABEL 210,-12,0,0,.22 @TRSEA SURFACE TEMPERATURE (DEG C)
LABEL 130,11,-1,0,.22 @TR'LAB4'
FRAME

Note: If you use the FILL command, we suggest that you use SHADE while
customizing and fine-tuning your movie, then use FILL for the final run. SHADE is
much faster.

Ch5 Sec4.1.1. Initializing the color table

If you create a movie with a title frame, or a first frame which otherwise uses different
colors than the rest of the movie, you should be aware of an HDF peculiarity: all the
colors that you plan to use in your movie must be in the first frame, or else color
behavior will be unpredictable when you animate.

To "reserve" the colors you need, use overlapping full-window viewports. Make a
representative plot in the title frame, then cover over it with either a black or white
rectangle and finally write the title text. Here is a script which initializes the color table
while creating a title frame.

! define 3 identical full-frame viewports
DEFINE VIEW full1; DEFINE VIEW full2; DEFINE VIEW full3

! draw frame one of the movie in full color
SET VIEW full1
SET DATA coads_climatology
SHADE/LEVELS=(16,31,1)/L=1 sst ! dummy frame

! white-out over the picture
SET VIEW full2
GO setup_text
SHADE/PALETTE=white/NOLAB/NOKEY/i=1:2/j=1:2 (i+j)*0

!put on title frame labels (using [0,1] coordinate space)
SET VIEW full3
GO setup_text
PPL PLOT
LABEL .5,.7,0,0,.3 @TRMy Title
PPL ALINE 1,.2,.55,.8,.55
PPL ALINE 1,.2,.53,.8,.53
LABEL .5,.4,0,0,.2 @CRBy me

!capture the title frame and clean up
FRAME
GO cleanup_text

Ch5 Sec4.1.2. Making movies in batch mode

Ferret, like other Unix applications, can be run in "batch" mode by redirecting standard
input and output. Thus

ferret -unmapped <movie_commands.jnl >&movie.log&

will make a movie running in background mode based on the commands in file
movie_commands.jnl logging standard output and standard error in file movie.log.

Note, however, that when used in this mode to make a movie Ferret will still require
access to an X windows display (as in "setenv DISPLAY node:0"). To eliminate this
requirement we recommend the use of the X11R6 "virtual frame buffer" (Xvfb). This
application permits the movie frames to be generated in the absence of any physical

display device. Consult your system manager for the availability of X11R6 for your
system.

Ch5 Sec5. CREATING gif IMAGES

gif is a highly compressed format suitable for single images. (Ferret will not directly
create gif89 animations.) The procedure for creating a gif image is nearly identical to
the creation of a single frame of an HDF file. The modification is generally just to select
a file name with the ".gif" extension; Ferret will automatically sense this as a request to
create a gif-formatted image file. Alternatively, any file name can be used if the gif
format is specified explicitly using

FRAME/FORMAT=gif

If a number of gif images are created using the same file name Ferret will automatically
rename subsequent versions with a version number. Thus a repeat loop can be used to
generate many gif images.

Example:

REPEAT/L=1:12(FILL sst; GO fland; FRAME/file=myimage.gif)

Note: In this mode of grabbing an image, Ferret creates a gif file by requesting the
image back from your screen (your X server). In order for Ferret to correctly grab the
image, the X server should be configured to be running either in 8-bit PseudoColor
mode (i.e. direct color) or 24-bit TrueColor mode (i.e. indexed color) with X server
backing store enabled. If the X server is configured in 16-bit TrueColor (also indexed
color) mode, Ferret will be unable to grab the gif image from the X server.

An alternative approach to creating gif's (which does not share this restriction) is to
invoke Ferret with the -gif command line switch "ferret -gif" (p. 6).

Ch5 Sec6. CREATING MPEG ANIMATIONS

MPEG animations can be created from the outputs of the FRAME command—either
HDF animation files or a sequence of gif images. Various public domain utilities are
available to perform the conversion from Ferret's output formats into MPEG
animations. The routine hdf2mpeg (available in 2002 from
ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/NCSA/HDF2MPEG/) can be used to convert
HDF files into MPEG animations; mpeg_encode (available from mm-
ftp.CS.Berkeley.EDU in /pub/multimedia/mpeg/encode) can be used to convert
sequences of gif files. New and improved routines may have become available since the
time of this writing. See further documentation on this topic in the FAQ file from the
Ferret home page.

For help with Ferret see our Support Policy

Last modified: December 16, 2004

ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/NCSA/HDF2MPEG/
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/animations/making_mpegs.html
file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 6: CUSTOMIZING PLOTS

Ch6 Sec1. OVERVIEW

Detailed control is possible over most aspects of Ferret graphical outputs. A custom modification
will require the user to either add a qualifier to a Ferret command or communicate directly with
the graphical package PPLUS, which is contained inside of Ferret. The most commonly used
PPLUS commands are listed in the following sections of this chapter. Consult the PLOT PLUS for
Ferret manual for complete command lists and the specifics of command syntax.

Ferret communicates with PPLUS by sending a sequence of commands to PPLUS (the command
PPL ECHO ON causes the sequence of commands that Ferret sends to PPLUS to be logged in the
file fort.41.). The user can give further commands to PPLUS directly using the Ferret command
PPL (e.g., yes? PPL AXLEN 10,7). Some results can be attained in two ways—with either
Ferret or PPLUS commands. However, the interaction of the two is complex and the inexperienced
user may get unexpected results, so when possible, use only Ferret commands.note 1

PPLUS uses a deferred mode of output—various commands are given to PPLUS which describe
the plot state but produce no immediate output; the entire plot is then rendered by a single
command. Some plot states (e.g., axis labels) are set by Ferret with every plotted output; to
customize these states it is necessary to use the /SET_UP qualifier (which sets up the plot inside of
PPLUS) and then modify the state with direct PPL commands. Other plot states are never set by
Ferret and, if modified at any time, remain in their specified state for all subsequent plots. Still
other states are modified by Ferret only under special circumstances. Here is a very simple
customization (Figure 6_1):

yes? PLOT/X=1:100/TITLE="My SIN Plot"/SET_UP sin(x/6) !use /SET_UP
yes? PPL YLAB "SIN value"

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/_FN_0.htm
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig01.gif

yes? PPL PLOT

The examples throughout this chapter show how the /SET_UP qualifier on graphics commands can
be used to delay rendering of a plot while the user modifies plot appearance with PPLUS
commands.

Below is a list of PPLUS commands which are reset by Ferret. Please see the the PPLUS Users
Guide for details of PPLUS syntax. (p. 453)

PPLUS command when reset by Ferret

XFOR, YFOR reset for every plot

XLAB, YLAB reset for every plot

XAXIS, YAXIS reset for every plot

LABS reset for every plot

ALINE reset for every plot

TAXIS OFF reset for every plot

TITLE reset for every plot

TICS reset for every plot (small tic size, only)

WINDOW ON reset for every plot

PEN 1,n reset for every plot

LIMITS reset for every plot

ORIGIN reset by SET WINDOW/ASPECT and SET VIEWPORT; Y origin
may be shifted to accommodate many line style keys

AXLEN modified by SET WINDOW/ASPECT and SET VIEWPORT

VIEWPORT modified by WIRE/VIEW

LEV modified by CONTOUR and SHADE unless /LEVELS_SAME given

VECSET modified by VECTOR unless /LENGTH_SAME given

WINDOW modified for "fresh" plots but not for overlay plots

Ch6 Sec2. GRAPHICAL OUTPUT

Ch6 Sec2.1. Ferret graphical output controls

Ferret command Function

CONTOUR produces a contour plot of a single field

FILL alias for CONTOUR/FILL; produces color-filled contour plot

PLOT produces a line or symbol plot of one or more arrays

SHADE produces a shaded representation (rectangular cells)

VECTOR produces a vector arrow plot

WIRE produces a 3D wire frame plot

SET WINDOW manipulates graphics windows

SET VIEWPORT places graphics output into a sub-window (pane)

Ch6 Sec2.2. PPLUS graphical output commands

The plot commands, in the table below, can be customized using /SET_UP to delay display. The
PLOT/SET_UP is followed by PPLUS commands which customize the settings for axes, labels,
plot layout, and so on. Then the plot will ultimately be rendered using a PPLUS graphical output
command (not the Ferret counterpart). A customized contour or filled-contour plot is rendered with
PPL CONTOUR, a wire frame plot with PPL VIEW and so on. Please see the overview of this
chapter (p. 165) and also the discussion in the Commands Reference section about PPLUS (p.
359).

In the following sections, there is a "PPLUS commands" subsection detailing which PPLUS
commands are used for each type of customization. See the examples in those sections, and cross-
references to the PPLUS command syntax in the PPLUS manual (Appendix B).

Command Function

CONTOUR makes a contour plot

PLOT plots x-y pairs for all lines of data

PLOTUV makes a stick plot of vector data

SHADE makes a shaded representation

VIEW makes a wire frame plot

VECTOR makes a plot of a vector field

The graphical output command PLOTUV can be used to make stick plots easily, as the following
time series example shows.

yes? SET DATA coads; SET REGION/X=180/Y=0/L=400:500
yes? PLOT/SET uwnd, vwnd

yes? PPL PLOTUV

Ch6 Sec3. AXES

By default, Ferret displays X- and Y-axes with tics and numeric labels at reasonable intervals and a
label for each axis. Time axes are also automatically formatted and used as needed. These axis
features can be modified or suppressed using the following Ferret direct controls and PPLUS
commands.

Ch6 Sec3.1. Ferret axis controls

The following qualifiers are used with graphical output commands PLOT, VECTOR, SHADE, and
CONTOUR to specify axis limits, tic spacing, and possible axis reversal:

 Ferret qualifers

 /HLIMITS, /VLIMITS, /NOAXIS

The /HLIMITS and /VLIMITS qualifiers use the syntax /HLIMITS=lo:hi:delta. Tic marks are
placed every "delta" units, starting at "lo" and ending at "hi". Every other tic mark is labeled.
"delta" may be negative, in which case the axis is reversed.

The /NOAXIS qualifier removes both X and Y axes from the plot. This is particularly useful for
plots using curvilinear coordinates (map projections) where the final axis values represent
transformed axis values rather than world coordinates.

The following arguments to SET MODE and CANCEL MODE determine axis style (e.g., SET
MODE CALENDAR:days) :

 Ferret arguments

 CALENDAR

 LATIT_LABEL

 LONG_LABEL

See the Commands Reference section of this manual (p. 299) for more information.

Ch6 Sec3.2. PPLUS axis commands

PPLUS commands can be used to customize axis settings. Note that Ferret makes settings for all
of these automatically; you will only need to make PPLUS calls to change the axis properties. See
the examples below, and the section on PPLUS graphical commands (p. 167) for more on the
syntax to make PPLUS calls.

Command Function

XAXIS* controls numeric labeling and tics on the X axis (redundant with /HLIMITS) (p.
520)

YAXIS* controls numeric labeling and tics on the Y axis (redundant with /VLIMITS) (p.
520)

AXATIC sets number of large tics automatically for X and Y (p. 493)

AXLABP locates or omits axis labels at top/bottom or left/right of plot (p. 493)

AXLEN** sets axis lengths (p. 493)

AXLINT sets numeric label interval for axes every nth large tic (p. 493)

AXLSZE sets axis label heights (p. 493)

AXNMTC sets number of small tics between large tics on axes (p. 493)

AXNSIG sets number of significant digits in numeric axis labels (p. 493)

AXSET allows omission of plotting of any axis (redundant with /AXES=) (p. 494)

AXTYPE sets axis type (linear, log, inv. log) for x- and y-axis (p. 494) (See also
/HLOG,/VLOG qualifiers on plot commands)

TICS sets axis tic size and placement inside or outside axes (p. 514)

XFOR* sets format of x-axis numeric labels (p. 520)

YFOR* sets format of y-axis numeric labels (p. 521)

XLAB* sets label of x-axis (p. 521)

YLAB* sets label of y-axis (p. 522)

TXLABP establishes time axis label position (or absence) (p. 515)

TXTYPE* sets the style of the time axis (p. 516)

TXLINT* specifies which time axis tics will be labeled (p. 515)

TXLSZE sets height of time axis labels (p. 516)

TXNMTC sets number of small tics between large tics on time axis (p. 516)

* issued by Ferret with every relevant plot

** issued by Ferret upon SET WINDOW/ASPECT or SET VIEWPORT

Examples

1) Plot with no axis labels (character or numeric) and no tics (Figure 6_2). (Equivalent to

 yes? GO box_plot PLOT/I=1:10/NOLABEL 1/i)

yes? PLOT/i=1:30/NOLABEL/SET 1/i
yes? PPL AXLABP 0,0 !turn off numeric labels
yes? PPL TICS 0,0,0,0 !suppress small and large tics
yes? PPL PLOT !render plot
yes? PPL TICS .125,.25,.125,.25 !reset tics to default
yes? PPL AXLABP -1,-1 !reset numeric labels

2) customize x-axis label (Figure6_3); XLAB always reset by Ferret)

yes? PLOT/SET/i=1:100 sin(x/6)
yes? PPL XLAB My Custom Axis Label
yes? PPL PLOT

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig02.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig03.gif

3) specify tic frequency for y axis

yes? PLOT/i=1:30/YLIM=0:1:.2 1/i

4) Specify the size and location of tic marks on the axes. The PPLUS tics command is

ppl tics,smx,lgx,smy,lgy,IX,IY

IX and IY are 1 for tics inside the plot box, 0 to straddle the axis line, and -1 for tics outside the
axis with -1 as default. These commands put large tics inside the axes.

yes? SHADE/SET/i=1:100/j=1:15 sin(x/6)*10./j
yes? PPL TICS .0,.35,.0,.35,1,1

yes? PPL SHADE

Ch6 Sec3.3. Overlaying symbols on a time axis

To overlay symbols or mark-up on a plot which has a formatted time axis (dates and times) it is
necessary to specify positions using the internal time encoding of that axis. Typically, the easiest
way to achieve this is to define a variable, say TT, which is the time encoding. This example
illustrates.

Example:

 demonstrate PLOT/VS and POLYGON over time axes (Figure 6_4)

USE coads_climatology

LET xsqr = {-1,1,1,-1} ! coordinates of a unit square
LET ysqr = {-1,-1,1,1}

LET xcircle = COS(6.3*i[i=1:42]/40) ! coordinates of unit circle
LET ycircle = SIN(6.3*i[i=1:42]/40) ! Notice the units of the time axis
SHOW GRID/L=1:3 sst

PLOT/X=180/Y=0 sst ! draw a time series plot

LET tt = T[GT=sst] ! tt is the coordinates along the T axis

! place an "X" at the value exactly at 7-aug
! "@ITP" causes interpolation to exact location

LET t0 = tt[T="7-aug-0000"@itp]
LET val0 = sst[X=180,Y=0,T="7-aug-0000"@itp]
PLOT/VS/OVER/NOLAB/SYM=2/LINE=8 t0,val0

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig04.gif

! put a box around the "X"
POLYGON/OVER/LINE=8/TITLE="Special region" t0+500*xsqr, 0.05*ysqr+val0

! place an "X" on the data point nearest to 15-may
! Note that @ITP is absent, so behavior is set by MODE INTERPOLATE

LET t1 = tt[t="15-may-0000"]
LET val1 = sst[x=180,y=0,t="15-may-0000"]
PLOT/VS/OVER/NOLAB/SYM=2/LINE=10 t1,val1

! put a circle around the "X"
PLOT/VS/OVER/LINE=10/nolab t1+500*xcircle,0.05*ycircle+val1

Example (continued):

 mark-up over a Hofmuller diagram (Figure 6_5)

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig05.gif

SHADE/X=180 sst ! latitude vs time plot
LET tlo = tt[T="1-jul-0000"@itp]
LET thi = tt[T="1-aug-0000"@itp]
POLYGON/OVER/LINE=7/PAL=gray/PAT=lite_up_left_to_right {`tlo`, `thi`,` thi`,
`tlo`}, {20, 20, 40, 40}

Ch6 Sec4. LABELS

Ferret, by default, produces labeled axes, a plot title, documentation about the data set, the plot
axes normal to the plot, nd a signature (current date and Ferret version number) when a plot is
rendered. The /NOLABELS qualifier suppresses the plot title, the documentation and signature,
and the axis labels of independent axes. Note that you can use the LABEL command to add any
labels that you need..

Ch6 Sec4.1. Adding labels

The Ferret command LABEL adds a label to a plot and takes the following arguments:

yes? LABEL xpos,ypos,center,angle,size text

where xpos and ypos are in user (axis) units, size is in inches, angle is in degrees (0 at 3 o'clock)
and center is -1, 0, or +1 for left, center, or right justification. There is an example in the section
below on PPLUS label commands (p. 177). The label position will adjust itself automatically when
the plot aspect ratio or the viewport is changed.

If you prefer to locate labels using inches rather than using data units issue the command

 yes? LABEL/NOUSER xpos,ypos,...

Note, however, that the layout of a plot in inches—lengths of axes, label positions, etc.—shifts
with changes in window aspect ratio (SET WINDOW/ASPECT) and with the use of viewports.
Labels specified using LABEL/NOUSER will need to be adjusted if the aspect ratio or viewport is
changed.

Beginning with Ferret v5.53, long labels may be specified, up to 2048 characters long. This
applies to all kinds of labels: titles, axis labels, and moveable labels. To create multiple-line labels,
use the separator <NL> to locate the line-breaks. If centered labels are requested, each line is
centered separately. See examples on pages 177 and 178. Also try the demo script

multi_line_demo.jnl for examples of this usage.

 Notes:

1) If you use the command PPL LABS instead of LABEL, be aware that when defining a new
movable label, all lower-numbered labels must already be defined.

2) The Ferret command LABEL is an alias for PPL %LABEL. PPLUS does NOT consider a
label created with %LABEL to be a movable label. Consequently, no label number is assigned and
the label cannot be manipulated as a movable label.

3) %LABEL is an unusual command in that the label appears on the plot immediately after the
command is given, rather than being deferred. This has ramifications for the user who has multiple
plot windows open and is in MODE METAFILE, since a metafile is not closed until a new plot is
begun. If the user produces a plot in window B, and then returns to a previous window A and adds
a label with LABEL, that label will appear on the screen correctly, but will be in the metafile
corresponding to window B.

Example

yes? PLOT/I=1:100 sin(i/6)
yes? LABEL 50, 1.2, 0, 0, .2 @P2MY SIN PLOT

Ch6 Sec4.2. Listing labels

The PPLUS command PPL LIST LABELS can be used to list the currently defined labels. For
example,

 yes? PPL LIST LABELS
@ACSEA SURFACE TEMPERATURE (Deg C)
@ASLONGITUDE
@ASLATITUDE

 XPOS YPOS HGT ROT UNITS
LAB 1 8.000E+00 7.200E+00 0.060 0 SYSTEM @ASFERRET Ver. 4.40
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 2 8.000E+00 7.100E+00 0.060 0 SYSTEM @ASNOAA/PMEL TMAP
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 3 8.000E+00 7.000E+00 0.060 0 SYSTEM @ASOct 22 1996 09:24
LINE PT: 0.000E+00 0.000E+00 NO LINE CENTER JUSTIFY LABEL
LAB 4 0.000E+00 6.600E+00 0.120 0 SYSTEM @ASTIME : 16-JAN
LINE PT: 0.000E+00 0.000E+00 NO LINE LEFT JUSTIFY LABEL
.
.

.

The first three lines of output show the plot title, the X axis label, and the Y axis label. These labels
are controlled by the PPL TITLE, PPL XLAB, and PPL YLAB commands, respectively. The three
characters "@AS" indicate the font of the label—in this case "ASCII Simplex" (see the section in
this chapter, "Fonts," p. 188).

Next is a table of "movable labels"—labels that were defined using the PPL LABS command.
Labels are generally simpler to control with the GO unlabel and LABEL commands described in
the following sections, rather than with the PPL LABS command.

Each label is described with two lines. The column headers refer to the first of the two. The
coordinates of each label, (XPOS,YPOS), may be in units of "inches" or may be in the units of the
axes. This is reflected in the UNITS field of the output, which will contain "SYSTEM" if the
coordinates are in inches or "USER" if the coordinates are axis units. (The /NOUSER qualifier on
the PPL LABS command is used to indicate that coordinates are being given in inches.)
Coordinates are calculated relative to the axis origins. The PPL HLABS and PPL RLABS
commands control label height and rotations, respectively.

The second line of the label description contains information about an optional line on the plot
which can be used to point to the label (refer to the PPLUS command LLABS or see the section in
this chapter, "Positioning labels using the mouse pointer," p. 179). At the end of this line is the text
of the movable label.

In addition to PPLUS LIST LABELS, you can also issue a SHOW SYMBOLS command; the
labels that are automatically generated are available as symbols,

yes? SHOW SYMBOLS ! lists all symbols that have been defined
yes? SHOW SYMBOLS LAB* ! lists symbols starting with LAB

Ch6 Sec4.3. Removing movable labels

Removing a movable label is a two step process: identifying the label number and then deleting the
label. PPLUS internally refers to all movable labels with label reference numbers. The PPLUS
command LIST LABELS will list the PPLUS labels and the text strings they contain. Then the user
can use "GO unlabel n", where n is the reference number, to delete a label.

Example
In this example we plot the same figure in two viewports, one plot with the default "signature," and
one plot with the signature removed (Figure 6_6).

!upper viewport has a "signature"
yes? PPL BOX on
yes? SET VIEW upper
yes? PLOT/I=1:100 sin(i/6)

!in the lower viewport
!the signature has been removed
yes? SET VIEW lower
yes? GO unlabel 1
yes? GO unlabel 2
yes? GO unlabel 3
yes? PPL PLOT
yes? CANCEL VIEWPORT

Ch6 Sec4.4. Axis labels and title

Special commands and special logic govern the labels of axes and titles. Use the PLOT+
commands XLAB, YLAB, and TITLE in conjunction with the Ferret plotting qualifier /SET_UP to
modify the labeling choices that Ferret makes. These are discussed in the section below, PPLUS
label commands (see p. 176).

For two-dimensional plots (CONTOUR, FILL) Ferret will label the plot axes with the titles and
units from the appropriate axes of the grid. The command SHOW GRID can be used to see the
labels that will be used. The title will be the title of the variable (see SHOW VARIABLE, p. 410,
and SHOW DATA/VARIABLE, p. 404) modified by the units and comments about
transformations in parentheses.

For one-dimensional plots (PLOT) other than PLOT/VS the independent axis will be labeled using
the title and units from the appropriate axis of the grid. The dependent axis will be labeled with the
units of the variable being plotted. The title will be labeled as for two-dimensional plots.

For output of the PLOT/VS command the axes will be labeled with the titles of the variables (see
SHOW VARIABLE, p. 410, and SHOW DATA/VARIABLE, p. 404) each modified by its units
and comments about transformations in parentheses.

Ch6 Sec4.5. Ferret label controls

In addition to LABEL (discussed above, page 173), Ferret controls include the /NOLABELS
qualifier, which suppresses default plot title, documentation and signature, axis labels, and /TITLE
qualifier to graphical output commands PLOT, SHADE, CONTOUR, VECTOR, and WIRE:

 Ferret qualifiers

 /NOLABELS

 /TITLE=

and arguments to SET MODE (p. 380) and CANCEL MODE (p. 303):

 Ferret arguments

 SET MODE ASCII_FONT

 SET MODE CALENDAR

 SET MODE LATIT_LABEL

 SET MODE LONG_LABEL

Ch6 Sec4.6. PPLUS label commands

Ferret stores the text strings of the following labels in PPLUS symbols. The symbol names are:

symbol name label

LABTIT title label

LABX X axis label

LABY Y axis label

LABn nth movable label

PPLUS commands can be used to customize labels. See the example below, and the section on
PPLUS graphical commands (p. 167) for more on the syntax to make PPLUS calls. As stated
above, PPLUS commands regarding movable labels are largely superceded by the Ferret command
LABEL and "GO unlabel n". However the /SETUP qualifier on a plot command in conjuction
with PPLUS commands LABSET, TITLE, XLAB, and YLAB are used to modify the labels that
Ferret automatically puts on plots. See the section on PPLUS graphical commands for more on
calling PPLUS plot commands (p. 167)

Command Function

LIST LABELS shows the currently defined labels (p. 505)

LABSET sets character heights for labels (p. 502)

TITLE* sets and clears main plot label (p. 514)

XLAB* sets label of X axis (p. 521)

YLAB* sets label of Y axis (p. 522)

LABS* makes, removes, or alters a movable label (p. 501) (redundant with LABEL
command)

HLABS sets height of each movable labe (p. 500)l

RLABS sets angle for each movable label (p. 511)

LLABS sets start position for and draws a line to a movable label (p. 506)

* issued by Ferret with every relevant plot

Example

This example customizes a plot using PPLUS label controls. The LABSET command (See p.

 502) is used here to control the size of the main label, x-label, and y-label. The Ferret LABEL
command is used to add a label.

yes? PLOT/I=1:100/SET_UP i * sin(i/6)
yes? PPL LABSET 0.3, 0.08, 0.3

yes? PPL TITLE

yes? PPL YLAB "Modiified SIN function"

yes? PPL PLOT

yes? LABEL 10.,20,-1,30,0.2 "Angled label"

Beginning with Ferret v5.53, long labels may be specified, up to 2048 characters long. To create
multiple-line labels, use the separator <NL> to locate the line-breaks. If centered labels are
requested, each line is centered separately. See the demo script multi_line_demo.jnl for examples
of this usage.

Example

Use of long axis labels. Use the backslash continuation character for better readability.

yes? PLOT/I=1:100/TITLE=" "/SET i*cos(i/8)
yes? PPL YLAB "A four-line y label.<nl>second line\
<nl>third line<nl>fourth line"
yes? PPL XLAB "a two-line X label. <nl>COSINE function"
yes? PPL PLOT

Ch6 Sec4.7. Positioning labels relative to other plot elements

Once a plot has been made, we can use the location and size of plot elements such as axis lengths
to position any labels we would like to add. A number of global symbols are defined when a plot is
drawn. See the section on "special symbols" for a compete list of these. (p. 198)

Use the LABEL command to position a label. To position a label using page inches, use
LABEL/NOUSER which takes the units to be inches from the origin. When plotting in a viewport,
plot inches are measured from the origin of the viewport.

 Example:

yes? plot/i=1:100 (i/2)*sin(i/6)

 ! Put a label in the lower right, use user units
yes? label/user `($xaxis_max)`, `($yaxis_min)`, 1, 0, .2, "@P2lower right"
!-> PPL %LABEL/user 100, -50, 1, 0, .2, "@P2lower right"

 ! Use plot inches. Put a label just inside the plot area
yes? label/nouser `(pplxlen)/2`, `(pplylen) - 0.4`, 0, 0, 0.2, "@P2center
top"
!-> PPL %LABEL/nouser 4, 5.6, 0, 0, 0.2, "@P2center top"

 ! Put a label in the lower left, making sure it's not off the page.
yes? let xpl = -1*MIN(1,`(pplxorg)`)
yes? let ypl = -1*MIN(1,`(pplyorg)`)
yes? label/nouser `xpl`, `ypl`, -1, 0, 0.2, "@P2lower left"
!-> PPL %LABEL/nouser -1, -1, -1, 0, 0.2, "@P2lower left"

Beginning with Ferret v5.53, long labels may be specified, up to 2048 characters long. To create
multiple-line labels, use the separator <NL> to locate the line-breaks. If centered labels are
requested, each line is centered separately. See the demo script multi_line_demo.jnl for examples
of this usage.

Example:

This is one LABEL command, used to put a block of text on the page. Use the backslash
continuation character for better readability.

yes? LABEL 3,95,-1,0,0.14,\
"@CRFerret is an interactive computer visualization and analysis<NL>\
environment designed to meet the needs of oceanographers and<NL>\
meteorologists analyzing large and complex gridded data sets. It<NL>\
runs on most Unix systems, and on Windows NT/9x using X<NL>\
windows for display. It can be installed to run from a Web<NL>\
browser (WebFerret) for use while away from your desk or<NL>\
from a system lacking X windows software. It can transparently<NL>\
access extensive remote Internet data bases using OPeNDAP,<NL>\
formerly known as DODS."

Ch6 Sec4.8. Positioning labels using the mouse pointer

Often it is awkward precisely to position plot labels. Using the mouse pointer can simplify this as

mouse clicks can be used to place labels and other annotations on plots. This command option
works only in Window 1. It does not function in other windows that have been opened with SET
WINDOW/NEW.

The full syntax of the LABEL command is

LABEL xpos, ypos, justify, rotate, height "text"

 xpos,ypos are the (x,y) position of the label

 justify = -1, 0, 1 for left, center, right justification — default = left

 rotate is given in degrees counter-clockwise — default = 0

 height is in "inches"

 text to be plotted. This argument may include font and color specifications

Note that the LABEL /NOUSER qualifier is not relevant for mouse input.

If either of the first two arguments (label position) are omitted it is a signal that mouse input is
desired. For example

 yes? GO ptest
yes? LABEL "this is a test"

will wait for mouse input, using the indicated point as the lower left corner of the text string.
Equivalent to this is

yes? LABEL ,,-1,0,.12 "this is a test"

Note that left justification will always be used in this mode, regardless of the value specified.

For mouse control over justification and/or to draw a line or arrow associating a label with a feature
on the plot, explicitly omit the justification argument. Ferret will put up a menu requesting a
selection of "Arrow", "Line", "Right", "Center", "Left". If Arrow or Line is selected two mouse
inputs are required — the first indicating the feature to be marked, the second indicating the lower
left corner of the text area. If "Right", "Center" or "Left" is specified the text will be justified
accordingly.

Note that the mouse-driven LABEL command defines the symbols XMOUSE and YMOUSE and
writes comments regarding their definitions into the current journal file (if any) as described under
the WHERE alias.

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. Comments
which include the digitized position are also written to the current journal file (if open). The
WHERE command can be embedded into scripts to allow interactive positioning of color keys,
boxes, lines, and other annotations.

Ch6 Sec4.9. Labeling details with arrows and text

Using the technique described in section 4.7 it is also simple to create a label with a line or arrow
indicating a detail of a plot. Follow the procedure outlined above but select "Line" or "Fancy line"
(arrow) from the menu that appears in the plot window. Then click on the detail which is to be
labeled. The menu will appear again—this time select the justification and click on the label
position.

To see the precise numerical coordinates of the arrow and label use the PPL ECHO ON command
prior to the PPLUS command which redraws the plot. The endpoint coordinates of the arrow will
appear as a comment line which begins with "C LLABS" in the echo file, fort.41. The coordinates
of the label will appear as a comment line which begins with "C LABS". (Easily viewed with
"spawn tail -2 fort.41".)

Ch6 Sec5. COLOR

Ferret and PPLUS use colors stored by index. Storage indices 0 and 1 are used as window
background and foreground colors. Indices 1–6 are reserved for lines. As the user makes SHADE
and FILL requests, each color is assigned to the next available storage index beginning at 7, and
that assignment is automatically "protected" when viewports or color overlays are added.

If your SHADE and FILL commands request more colors than there are storage indices (256), you
will be informed with an error message and the color behavior may become unpredictable. For
example, if you have multiple viewports defined within a window you may run out of color storage
indices. If you are using the same color palette(s) in each viewport, you can free up indices by
canceling the color protections with PPL SHASET RESET. See the examples later in this section
for details on removing color protection. Currently, there is no way to ask PPLUS how many colors
it is using in a plot.

The following discussion is divided into a treatment of text and line colors, and a discussion of
shade and fill color.

Ch6 Sec5.1. Text and line colorsnote 2

By default the background color is white and the text color is black. To reverse these, so the
background is black, call the script "black.jnl". And to restorethe white background, call
"white.jnl". Black and white are the only colors that can be used for the background.

yes? go black
yes? ! ...plot commands...
yes? go white
yes? ! ...more plot commands..

Line type and color for plot commands are most easliy controlled by the command qualifiers
PLOT/COLOR=, PLOT/THICKNESS=, and PLOT/DASH in the Command Reference section (p.
348)

For text, and optionally for plot lines, line type text colors are regulated by use of storage indices
1–6, each index associated with a default color. These are listed in the table in the section "PPLUS
text and line color commands" below (p. 181) It is possible to change the six available line colors
with the PPLUS enhancements command COLOR. (See Plotplus Plus: Enhancements to Plotplus.)
 When you create a plot with multiple data lines, Ferret automatically draws each line in a different
color. By default, axes, labels, and the first data line are all drawn in the same color. You can
modify this behavior with the following Ferret and PPLUS commands.

Ch6 Sec5.1.1. Ferret color controls for lines

Plotted line colors can be set using the /COLOR= qualifier on PLOT, CONTOUR, VECTOR, or
POLYGON commands. The available colors are black, red, green, blue, lightblue, purple, and
white. In addition, starting with Ferret version 5.4, the user has direct control over dashed lines,
and can combine them with choices of colors and thickness.

Plotted colors and line type may also be set with the older syntax

yes? PLOT/LINE=n
yes? VECTOR/PEN=n
yes? CONTOUR/PEN=n

where "n" is an integer between 1 and 18.

More direct control over line color and thickness is available with the qualifiers /COLOR and
/THICKNESS and the line type is controlled with /DASH, /SYMBOL=, and /SIZE=

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/_FN_1.htm

Examples

1) Overlay three lines

yes? PLOT/i=1:10 1/i

yes? PLOT/OVER/COLOR=green/i=1:10 1/(i+3)

yes? PLOT/OVER/i=1:10/COLOR=purple/THICK=3 1/i+1/(10-i)

2) dashed lines with color and thickness settings

yes? PLOT/DASH/I=1:100 sin(i/5)
yes? PLOT/OVER/DASH=(0.3,0.1,0.3,0.1)/COLOR=RED/THICK/I=1:100 sin(i/7)
yes? PLOT/OVER/DASH=(0.6,0.2,0.1,0.2)/COLOR=RED/THICK/I=1:100 sin(i/9)

3) Symbols with color and thickness settings

yes? PLOT/THICK=2/I=1:100 sin(i/5)

yes? PLOT/OVER/COLOR=red/THICK=3/SYM=4/SIZ=0.10/i=1:100 sin(i/7)

yes? PLOT/OVER/COLOR=green/LINE/SYM=20/SIZ=0.15/i=1:100 sin(i/9)

Ch6 Sec5.1.2. PPLUS text and line color commands

Older syntax uses the PPLUS command PEN (p. 508) to assign a color and thickness index to a
specified pen. The pen colors are also used to set pen colors for labels (see p. 188). The PPL PEN
command takes the form:

yes? PLOT/SETUP var

yes? PPL PEN pen_#, color_thickness

yes? PPL PLOT

where pen_# is the PPLUS pen number and color_thickness is a color and thickness index. PPLUS
uses different pens for different tasks. By default, color_thickness index 1 is assigned to pen 0. The
following chart may be helpful.

pen number default color_thickness index drawing task

0 1 (black or white) axes and labels

1 1 (black or white) first data line

2 2 (red) second data line

3 3 (green) third data line

4 4 (blue) fourth data line

5 5 (cyan) fifth data line

6 6 (magenta) sixth data line

Note: Whether you plot several data lines simultaneously, or use the /OVERLAY qualifier on your
Ferret commands, the color/thickness result will be the same. But the Ferret/PPLUS interaction is
different. When Ferret plots multiple data lines simultaneously, PPLUS automatically cycles
through pen numbers 1 through 6 combined with symbols. Type GO line_samples in Ferret to
see the 36 different line styles. However, if you are using /OVERLAY for additional data lines,
Ferret controls the color_thickness assigned to pen 1 and PPLUS draws each overlay line with pen
1.

Pen numbers range from 0 to 6, and color_thickness indices range from 0 to 18. The values 1 to 18
follow the formula:

 color_thickness = 6 * (thickness - 1) + color

where thickness ranges from 1 to 3 and color from 1 to 6. Type "GO line_thickness" in Ferret to
see actual colors and thicknesses. Further information is in the appendix, "Ferret Enhancements to
PlotPlus, (p. 531)

The special color_thickness index 0 refers to the background color, which produces "invisible"
lines that can be used as "white-out" for special purposes. Pen 19 is a thin, white line which can be
used to draw in white over a colored area. Thicker white lines are not available.

The following PPLUS commands use the color_thickness index.

Command Function

@Cnnn uses color_thickness index "nnn" when embedded in a label (@c019 will
draw in white)

PEN sets color_thickness index for each data line (see chart above) (p. 508)

LEV sets color_thickness index for contour plot lines (p. 502) (redundant with
CONTOUR/LEVELS)

Examples

1) Ferret's default behavior—these two plots will look identical

yes? PLOT/i=1:10 1/i, 1/(i+3), 1/i + 1/(10-i) !3 curves with 3 pens
yes? PLOT/i=1:10 1/i !first curve with pen 1
yes? PLOT/OVER/i=1:10 1/(i+3) !overlay with pen 1 (next index)
yes? PLOT/OVER/i=1:10 1/i+1/(10-i) !overlay with pen 1 (next index)

2) select different colors for pens 0 and 1

yes? PLOT/i=1:10/SET 1/i
yes? PPL PEN 1 4 !assign color_thickness 4 to pen 1 (plot curve)
yes? PPL PEN 0 3 !assign color_thickness 3 to pen 0 (axes & labels)
yes? PPL PLOT !render the plot
yes? PPL PEN 0 1 !reset pen 0 to default color_thickness (not\
 reset by Ferret as is pen 1)

3) better way to do above plot:

yes? PLOT/i=1:10/LINE=4/SET 1/i !include line style with qualifer /LINE
yes? PPL PEN 0 3 ; PPL PLOT
yes? PPL PEN 0 1

4) To make a white label

yes? SHADE/L=1 sst
yes? LABEL/NOUSER 4,4,0,0,0.14 "@C019White Text"l

Ch6 Sec5.2. Shade and fill colors

Colors specified with the PPLUS SHASET command or in pallette files (also called spectrum files)
contain pre-defined color palettes. With Ferret 5.0 there are now three ways to specify how colors
are set in SHADE, FILL, and POLYGON plots: the earlier Percent RGB mapping, and also
By_value and By_level.

For examples of these palettes, try the demo script,

yes? go palette_demo

There is also an FAQ about choosing palettes,

How can I choose a good color palette for my plot? at
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

The Percent method defines points along an abstract path in RGB color space that runs from 0 to
100 percent. The pallette file bluescale.spk, for example, contains these lines.

 0 0 0 95

 100 95 95 95

The first number on each line is the percentage distance along the path in color space, and the
following numbers are the percents of red, green, and blue, respectively. In this simple two-line
file, the percentage runs from 0 to 100 % and the colors represent a range of blues from dark to
light. The percents in the first column must be in ascending order. The actual colors used by
SHADE or FILL are determined by dividing this abstract color scale into N equal increments,
where N is the number of colors, and linearly interpolating between the red, green, and blue values
from the neighboring SHASET percentage points.

For compatibility with older palette files, the Percent RGB mapping method is the default, and pre-
5.0 palette files will be interpreted correctly. Palette files using Percent RGB mapping written out
with Ferret 5.0 will have a slightly different format. A starting line is optional, specifying
"RGB_Mapping_Percent". Any line starting with a ! will be ignored as a comment line. Blank lines
are ignored. for example the bluescale palette saved with Ferret 5.0 will look like this:

RGB_mapping Percent

! Level Red Green Blue

http://www.ferret.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

0 0 0 95

100 95 95 95

The first line informs Ferret that the RGB mapping method is Percent. Lines beginning with an
exclamation point are comments and ignored when read in—palette files created or modified using
a text editor can contain comment lines as documentation. Note that palette files need to be unix-
formatted files; values separated by tabs may not be read correctly.

The RGB mapping method By_value uses color interpolation similar to the Percent method, with
the significant difference that colors are based on the values of the variable being plotted rather
than an abstract zero to 100 percent axis. When you use the same By_value palette in several plots,
identical values of one variable will be represented by the same color in each plot. Specify
"RGB_Mapping_By_value" as the first line in the palette file. A line starting with a ! will be
ignored as a comment line. Blank lines are ignored. The values in column 1 must be in ascending
order. For example with the following palette, ocean_temp.spk:

RGB_Mapping By_value

!SetPt Red Green Blue

–2.0 80.0 0.0 100.0

0.0 30.0 20.0 100.0

10.0 0.0 60.0 30.0

20.0 100.0 100.0 0.0

30.0 100.0 0.0 0.0

35.0 60.0 0.0 0.0

a particular temperature, say 25 degrees, will have the same color on a SHADE or FILL plot with
levels ranging from 0 to 30, and on a plot with levels between 20 and 30 degrees.

The third RGB mapping method By_level allows the user to select the precise color to be used at
each level in SHADE and FILL plots. Unlike the other methods, no interpolation of RGB values is
done. Colors specified in the palette will be used exactly as defined. If there are more SHADE or
FILL levels than colors specified, the color palette will repeat. Specify "RGB_Mapping_By_level"
as the first line in the palette file. A line starting with a ! will be ignored as a comment line. Blank
lines are ignored. The levels listedin column 1 must be in ascending order.In the following palette,
by_level_rainbow.spk,

RGB_Mapping By_level

!Level Red Green Blue

1 80.0 0.0 100.0

2 30.0 20.0 100.0

3 0.0 60.0 30.0

4 100.0 100.0 0.0

5 100.0 0.0 0.0

6 60.0 0.0 0.0

for example, with 6 colors defined and used in a plot with 10 levels, the colors used at each plot
level will be as follows:

Plot level Color

1 1

2 2

3 3

4 4

5 5

6 6

7 1

8 2

9 3

10 4

Ch6 Sec5.2.1. Ferret shade and fill color controls

By default, Ferret will use the PPLUS spectrum file default.spk for shades and fills (normally
default.spk is a Unix soft link to rnb.spk). Ferret comes with many color palettes. The UNIX
command "Fenv" lists the environment variable $FER_PALETTE which is a list of paths to be
searched for palette files (the palette file names all end in .spk). The UNIX command "Fpalette"
allows you to find and examine these files (type "Fpalette -help" at the Unix prompt). You can
easily create your own palette files with a text editor.

Use the Ferret qualifier /PALETTE= with Ferret graphical output commands CONTOUR/FILL and
SHADE to specify a color palette. See the section in this chapter, "Contouring," p. 193, for details
on the CONTOUR qualifier /LEV, which controls colors and dash patterns, as well as sets contour
levels.

 Ferret qualifiers

 /PALETTE= (alias for PPL SHASET SPECTRUM=)

 /LEV=

PALETTE is also a stand-alone command alias; it sets a new default color palette.

Be aware that when you use /PALETTE= in conjunction with /SET_UP, the color spectrum you
specify becomes the new default palette; to restore the default palette use command PALETTE
with no argument.

Ch6 Sec5.2.2. PPLUS shade color commands

Command Function

SHASET Sets colors used by SHADE (p. 529)

SHAKEY Customizes the shade key (p. 529)

SHASET is an enhancement of PPLUS designed for Ferret. You can specify a color spectrum, save
a spectrum, change an individual color in the spectrum, or remove the protection (PPL SHASET
RESET) for colors already on the screen. See Plotplus Plus: Enhancements to Plotplus (p. 529) for
more information.

If you need precise control over each individual RGB color on your plot, run "GO exact_colors",
which contains instructions on modifying individual colors in a palette using SHASET.

The SHAKEY command (see p. 529) allows you to customize the location, size and labelling of
the color key for SHADE and FILL plots.

Examples

1) look at the relief of the earth's surface

yes? SET DATA etopo120
yes? SHADE rose !Ferret's default plot
yes? ! Emphasize land and sea with palette,customize the color key

yes? SHADE/PALETTE=land_sea/SET_UP rose palette

yes? PPL SHAKEY 1,0,0.1,2, , ,1.2,7.2,7.5,8.2

yes? PPL SHADE

2) Perhaps you would like to compare two topography resolutions. To illustrate what happens
when you use more colors than are available, request an excessively large number of levels:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER !upper half
yes? SHADE/LEV=(-8000,8000,100) rose !160 colors, default palette
yes? SET VIEWPORT LOWER !lower half
yes? SET DATA etopo20 !high resolution
yes? SHADE/LEV rose[d=etopo20] !another 160 colors (320 > 256!)
yes? CANCEL VIEWPORT

PPL+ error: You're attempting to use more colors than are available.
 Using SHASET RESET to re-use protected colors may help.

If you reuse the same palette, as in this example, issue PPL SHASET RESET after the first plot.
Now the second picture is made without error:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER
yes? SHADE/LEV=(-8000,8000,100) rose
yes? SET VIEWPORT LOWER
yes? PPL SHASET RESET !reuse color storage indices
yes? SET DATA etopo20
yes? SHADE/LEV rose[d=etopo20]
yes? CANCEL VIEWPORT

Ch6 Sec6. FONTS

Ch6 Sec6.1. Ferret font and text color

By default, Ferret produces all plot labels using the fonts ASCII Simplex (code AS) and ASCII
Complex (code AC). For upper and lower case letters these fonts are identical to the fonts Simplex
Roman (SR) and Complex Roman (CR), respectively. In addition, however, fonts AS and AC
include the complete set of ASCII punctuation characters and ignore the special PPLUS
interpretations of the characters "^" (superscript), "_" (subscript), and "@" (change font or pen).
Using a text editor, the ESCAPE character (decimal 27) may be inserted before the special

characters to restore their special interpretation.

The Ferret command CANCEL MODE ASCII causes Ferret to generate PPLUS labels which have
the font unspecified. When the font is unspecified the PPLUS command DFLTFNT determines the
default font and PPLUS responds to the special characters "^", "_", and "@". SET MODE ASCII
restores normal font behavior.

Ch6 Sec6.2. PPLUS font and text color commands

PPLUS commands can be used to customize the font settings. See the examples below, and the
section on PPLUS graphical commands (p. 167) for more on the syntax to make PPLUS calls.

Command Function

DFLTFNT Sets default character font for all labeling.

@AB In a label string, selects the font for which AB is a two-letter abbreviation
(i.e., @CI for complex italic—see PPLUS manual for fonts, p. 522).

@Pn Changes to pen color n (see p. 181 for corresponding colors)

Note that many ASCII punctuation characters are printable only in ASCII simplex and complex
fonts. In all other fonts these characters "@", "^", and "_" have special meanings: @ = font change;
^ = superscript; _ = subscript.

Examples

1) axis labels in custom fonts (Figure 6_7)

yes? PLOT/SET/i=1:10/NOLAB 1/i
yes? PPL XLAB @CImy x-axis label
yes? PPL YLAB @GEmy y-axis label
yes? PPL PLOT

2) set default font for all labeling (Figure 6_8)

yes? CANCEL MODE ASCII
yes? PPL DFLTFNT CS !complex script
yes? PLOT/I=1:100/TITLE="sin curve" sin(i/6)
yes? SET MODE ASCII
yes? PPL DFLTFNT SR !numeric axis labels unaffected by SET MODE ASCII

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig07.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig08.gif

Ch6 Sec7. PLOT LAYOUT

Ch6 Sec7.1. Ferret layout controls

Layout of plots can be controlled with commands which modify window size and aspect ratio, and
viewports.

 Ferret command

 SET WINDOW/SIZE=/NEW/ASPECT=

 DEFINE VIEWPORT/XLIMITS=/YLIMITS=/TEXT= view_name

 SET VIEWPORT view_name

 CANCEL VIEWPORT

Ch6 Sec7.1.1. Viewports

A viewport is a sub-rectangle of a full window. Viewports can be used to put multiple plots onto a
single window. Issuing the command SET VIEWPORT is best thought of as entering "viewport
mode." While in viewport mode all previously drawn viewports remain on the screen until
explicitly cleared with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots
are drawn in a single viewport without the use of /OVERLAY the current plot will erase and
replace the previous one; the graphics in other viewports will be affected only if the viewports
overlap. If viewports overlap the most recently drawn graphics will always lie on top, possibly
obscuring what is underneath. By default, the state of "viewport mode" is canceled. A number of
the most commonly desired viewports are pre-defined.

Ch6 Sec7.1.2. Pre-defined viewports

Name Description

FULL full window

LL lower left quadrant of window

LR lower right quadrant of window

UR upper right quadrant of window

UL upper left quadrant of window

RIGHT right half of window

LEFT left half of window

UPPER upper half of window

LOWER lower half of window

Example: Graphics Viewports

Plot four variables from coads_climatology into the four quadrants of a single window (Figure
6_9).

yes? SET DATA coads_climatology
yes? SET REGION/@W/L=8
yes? SET VIEWPORT LL
yes? CONTOUR sst !sea surface temperature
yes? SET VIEWPORT LR
yes? CONTOUR airt !air temperature
yes? SET VIEWPORT UL
yes? CONTOUR slp !sea level pressure
yes? SET VIEWPORT UR
yes? VECTOR/XSKIP=4/YSKIP=4 uwnd,vwnd !zonal wind, meridional wind
yes? CANCEL VIEWPORT

Ch6 Sec7.1.3. Advanced usage of viewports

For the purposes of defining viewports, a graphics window is considered to have length 1 and
height 1. All viewport commands refer to positions relative to the current aspect ratio of the
window. Thus,

yes? DEFINE VIEWPORT/XLIM=.5,1/YLIM=.5,1 V5

will locate the origin of viewport V5 in the upper right of the output window regardless of the
shape of the window.

yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM= 0,.3 V1
yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.3,.6 V2

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig09.gif

yes? DEFINE VIEWPORT/XLIM=0.,1/YLIM=.6,.9 V3

defines three viewports; each takes a third of the height of the page, and the entire width.

The qualifiers /XLIMITS=x1,x2 and /YLIMITS=y1,y2 allow the user to specify a portion of the
graphics window to be the defined viewport. The arguments must be values between [0,1] (NOT
world coordinates). x1 and x2 indicate the lower and upper bounds for the length of the window to
be defined as the viewport; y1 and y2 serve an analogous purpose for height.

The /TEXT=n qualifier allows the user control over the shrinkage or enlargement of text on the
plot. A value of /TEXT=1 indicates that the text size should be the same as it is on the full screen
output. If a value less than 1 is specified the text will shrink. If a value is not specified Ferret
chooses a value appropriate to the viewport size. Acceptable values are 0 < n < inf. but only values
up to about 2 yield useful results.

Ch6 Sec7.1.4. Viewport Symbols

When we "set viewport viewport_name" a number of Ferret symbols are set, giving access to the
viewport size, scaling, the values given to XLIM and YLIM when defining the viewport, and the
margins. See the Ferret Special Symbols section (p. 200) for a list of these symbols.

Ch6 Sec7.2. PPLUS layout commands

The following PPLUS commands can be called to customize the plot layout. See the section on
PPLUS graphical commands for how to call PPLUS plot commands (p. 167)

Command Function

ORIGIN sets distance of plot origin from lower left corner (p. 507)

BOX controls drawing of a box around the plotting area (p. 494)

CROSS controls drawing of lines through (0, 0) on graph (p. 496)

ROTATE rotates plot by 90 degrees on screen and plotter (p. 511)

AXLEN sets axis lengths (p. 493)

SHAKEY locates the color key (p. 529)

VECKEY locates the vector key (p. 517) (see also the VECTOR/NOKEY qualifier,p.
418)

AXSET includes/excludes particular axes (p. 494) (see also PLOT/AXES=,
 CONTOUR/axes=, etc., p. 350)

SIZE sets the overall size of the graphics window (p. 512)

Example:

A small plot, rotated 90 degrees, positioned with its origin at (4,4) on the plot page. Use the
/AXES qualifier to plot just the left and bottom axes.

yes? PPL BOX ON
yes? PPL ORIGIN 4,4
yes? PPL CROSS ON
yes? PPL ROTATE ON
yes? PPL AXLEN 2,2
yes? PLOT/I=1:30/AXES=0,1,1,0 sin(i)

Ch6 Sec7.3. Controlling the white space around plots

The location and size of the axis rectangle within the viewport or window determines the amount
of white space surrounding a plot. Complete control over this is possible using low level controls,
DEFINE VIEWPORT/TEXT_PROMINENCE, PPL ORIGIN, and PPL AXLEN, but these
commands are sometimes awkward to work with. A simpler strategy is to use the GO tool

yes? GO margins

When given without arguments this command will report the amount of white space surrounding a

plot. With arguments it will adjust the axis origins and lengths according to the requested margins.
Try the Unix command

> Fgo -more margins

for further documentation.

Ch6 Sec8. CONTOURING

Ch6 Sec8.1. Ferret contour controls

The following qualifiers to the Ferret command CONTOUR allow customization of a contour plot.

Qualfier Function

/FILL produces a color-filled contour plot (command FILL is an alias for
CONTOUR/FILL)

/LEVELS specifies contour levels, dash patterns, line thickness and color

/KEY turns on display of color key for color-filled contour plots (default)

/NOKEY turns off display of color key for color-filled plots

/NOAXIS turns off display of X and Y axes (useful for map projections)

/LINE adds contour lines to a color-filled plot (lines replace key)

/PALETTE= specifies a color palette for color-filled contour plot

/PEN= sets line style for contour lines (same arguments as PLOT/LINE=. See the
section in this chapter, "Text and Line Colors," p. 181.)

Ch6 Sec8.1.1. /LEVELS qualifier

The /LEVELS qualifier for CONTOUR, SHADE and FILL commands is a powerful and multi-
functional tool. It takes the form /LEVELS=levels_descriptor

/LEVELS without an argument /LEVELS instructs Ferret to reuse CONTOUR or SHADE levels
from the last CONTOUR or SHADE plot

/LEVELS=n specifying a simple numerical argument such as /LEVELS=25 instructs Ferret to
select approximately 25 levels automatically, based upon the limits of the data to be plotted

/LEVELS=nC (centered levels) appending a "C" to the suggested number of levels instructs Ferret
to select levels which are centered about the zero level. Such levels are suitable for zero-symmetric
quantities such as anomalies and velocity components.

/LEVELS=x.xD (delta levels) Use of "D" as a suffix instructs Ferret to use the preceding value
as the delta value between contour levels. Thus /LEVELS=0.25D will cause Ferret to select
contour levels that span the range of the data to be contoured with a delta value of 0.25 between
contour levels. The "D" and "C" notations can be combined. For example, /LEVELS=0.25DC
instructs Ferret to create zero-centered levels with a delta of 0.25 spanning the range of the data.

/LEVELS=(lo, hi, delta)
or
/LEVELS=(value)

or
/LEVELS=(lo, hi, delta, ndigits)

ndigits (applies to CONTOUR command only) is the number of decimal places to use when
labeling the level on individual contour lines as:
-1 for integer format

 or
-3 to omit numerical labels

When a CONTOUR or SHADE plot is finished, the levels that were used are stored in a set of
symbols so the settings can be used again or modified for subsequent plots. These symbols are

LEV_MIN minimum level used

LEV_MAX maximum level used

LEV_NUM number of levels used

LEV_DEL Delta between values, if the levels were uniform, or "irregular"

LEV_TXT The argument to the levels qualifier

Examples

 Note that by default the contour lines of negative values will be dashed and the zero contour will
be a heavy (DARK) line. See also (p.) for selecting color and thickness with the PEN option,
below.

/LEVELS=(-20,10,2) ! basic low,high,delta

/LEVELS=(5) ! a single level at 5

/LEVELS=(-20,10,2,-3) ! suppress numerical contour labels

/LEVELS=40 ! approximately 40 automatically selected
levels

/LEVELS=40C ! approximately 40 automatic levels
centered equally about zero

/LEVELS=0.2D ! automatic levels with a delta value of
0.2

/LEVELS=0.2DC ! automatic zero-centered levels with a
delta value of 0.2

Refinements to the basic levels may be applied using the syntaxes below. If blanks are included,
surround the entire levels descriptor in double quotation marks.

To request additional levels, simply append additional (lo, hi, delta) and/or (value) specifiers.

 /LEVELS="(-100)(-10,10,2)(100)" ! focus on -10 to10 range,
 but catch outliers

To specify the line type as dark (heavy line), append DARK(lo, hi, delta) or DARK(value). Similar
syntax can be applied to LINE (solid, thin) or DASH.

/LEVELS="(-100,100,5)DARK(-
100,100,25)"

! heavy line on multiples
of 25

/LEVELS="(0,10,2) DASH(2,10,2)" ! use dashed lines for
positive values

To remove selected levels, append the specifier DEL(lo, hi, delta) or DEL(value).

 /LEVELS="(-10,10,2) DEL(0)" ! -10 to 10 by 2's with the zero
contour removed

To specify the color_thickness index of contour lines (see the section in this chapter, "Color, " p.
180, for a discussion of color_thickness indices), append PEN(lo, hi, delta, index).

/LEVELS=(0,1,.2) PEN(.6,1,.2,2) ! use pen #2 (red) for the
upper contour levels

/LEVELS="(-100,100,10) PEN(-100,-
10,10,2) PEN(10,100,10,4)"

 ! Use Pen 2 (red) for negative
levels and pen 4 (blue) for
positive levels.

To apply the previous levels to a new plot, use the /LEVELS qualifier alone. To do more, the
levels symbols let you apply the settings in new ways:

yes? USE coads_climatology
yes? CONTOUR/L=1 sst
yes? SHOW SYM LEV*
LEV_MIN = "-5"
LEV_MAX = "35"
LEV_NUM = "9"
LEV_DEL = "5"

yes? SHADE/L=5/LEV=(($LEV_MIN), ($LEV_MAX), 2) airt
yes? SHOW SYM LEV*
LEV_TEXT = "(-5, 35, 5)"
LEV_MIN = "-5"
LEV_MAX = "35"
LEV_NUM = "21"
LEV_DEL = "2"

Ch6 Sec8.2. PPLUS contour commands

PPLUS commands can be used to customize contouring settings. Note that Ferret makes settings
for all of these automatically; you will only need to make PPLUS calls to change the properties of
the plot. See the examples below, and the section on PPLUS graphical commands (p. 167) for
more on the syntax to make PPLUS calls.

Command Function

CONPRE sets prefix for contour labels (usually a font, e.g., "@TR") (p. 494)

CONPST sets suffix for contour labels (usually units, e.g., "cm") (p. 495)

CONSET controls various aspects of contour labels and curves (see below)

CONSET is a modified version of the PPLUS command. Two new parameters have been
added—"spline_tension" and "draftsman". "spline_tension" controls a spline fitting routine for
contour lines, and is primarily used in conjunction with the narc parameter. The new parameter
"draftsman" enables the user to specify horizontally oriented contour labels (draftsman style) or the
default, labels oriented along contour lines. Arguments for CONSET are as follows:

CONSET hgt,nsig,narc,dashln,spacln,cay,nrng,dslab,spline_tension,draftsman

hgt = height of contour labels. default=.08 inches

nsig = no. of significant digits in contour labels. default=2

narc = number of line segments to use to connect contour points. default=1

dashln = dash length of dashes mode. default=.04 inches

spacln = space length of dashes mode. default=.04 inches

cay This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User's Guide (p.495).

nrng This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User's Guide (p. 495).

dslab= nominal distance between labels on a contour line. default=5.0 inches.

spline_tension = a real value that affects the fit of the contour line. default=0. This parameter is
only applied if narc is greater than 1. Otherwise, straight lines are drawn between data points and
no interpolated points are contoured. This value indicates the curviness desired.

abs(spline_tension) is nearly zero (e.g., .01). The resulting curve is approximately a cubic spline.

abs(spline_tension) is large (e.g., 10.). The resulting curve is nearly a polygonal line.

spline_tension = 0. The resulting curve is a cubic spline (the default algorithm in ppl).

A typical value for spline_tension is 1, and the typical useful range of values is .01 to 10.

draftsman = a real value that controls the label format. default = 0.

 0. = original label style—labels oriented along contour arcs

 > 0. = draftsman label style—labels oriented horizontally on the page

 < 0. = reserved for future use

Examples

Run the demonstration on custom contouring for many examples of label styles, contour line styles
(color, thickness dash pattern), and contour intervals— yes? GO custom_contour_demo

1) Color-filled contour plot of sea surface temperature

yes? SET DATA coads_climatology
yes? SET REGION/@t/l=6 !specify tropical Pacific, month 6
yes? SET VIEWPORT upper
yes? FILL sst !filled contour plot
yes? SET VIEWPORT lower
yes? FILL/LINE sst !make the plot with contour lines

2) Let's improve on the earlier example (5.2.2) of shaded bathymetry with blue palette

yes? SET DATA ETOPO60
yes? LET/TITLE="Surface relief x1000 (meters)" r1000 rose/1000
yes? FILL/PAL=ocean_blue/LINE/LEV=(-8,-1,1,-3)LINE(-8,-1,1,-3)/PEN=4 r1000

Here is a breakdown of the final command line:

FILL color-filled contour plot (alias for CONTOUR/FILL)

PAL specifies color palette for fill colors

LINE specifies that contour lines be overlaid on the filled plot (in lieu of a key)

LEV first arg specifies contour levels without numerical labels, next requests solid lines
(dashed lines are the default for negative contour values)

PEN assigns line style 4 (blue) to contour lines

Ch6 Sec9. SPECIAL SYMBOLS

When a plot command is executed, PPLUS automatically defines a number of global symbols
which are available to the user with SHOW SYMBOL They are documented in the PPLUS Users
Guide (p. 471), and listed here. These are not defined until associated plot commands have been
issued. Also note that the user cannot redefine the value of these symbols.

Example: draw a plot and examine and use some of the symbols

yes? plot/i=1:10 1./i
yes? SHOW SYMBOL ppl$xlen
PPL$XLEN = "8.000"

 ! Try to show an undefined variable (no response)
yes? SHOW SYMBOL ppl$lf_var

yes? SHOW SYMBOL ppl$line_count
PPL$LINE_COUNT = " 1"

 ! Use the value of a symbol to position a label
yes? LET my_xlen = (pplxlen) - 1.
DEFINE VARIABLE my_xlen = 8.00 - 1.

yes? LABEL/NOUSER `my_xlen`, 0.1, -1, 0, 0.1 "label at `my_xlen`"

SYMBOL PPL COMMAND DESCRIPTION

PPL$EOF RD,RWD,SKP "YES" if an EOF (end of file) was read.

PPL$FORMAT FORMAT The current format.

PPL$HEIGHT SIZE Height of the box.

PPL$INPUT_FILE RD,SKP,RWD The current input file.

PPL$LF_A LINFIT Constant from fit y= a + b*x

PPL$LF_A_STDEV LINFIT Standard error of A.

PPL$LF_B LINFIT Constant from fit.

PPL$LF_B_STDEV LINFIT Standard error of B.

PPL$LF_R2 LINFIT Regression coefficient squared.

PPL$LF_RES_VAR LINFIT Residual variance.

PPL$LF_VAR LINFIT Total variance.

PPL$LINE_COUNT - The number of the last line read.

PPL$PLTNME PLTNME The name of the plot file.

PPL$RANGE_INC %RANGE See Advanced Commands Chapter

PPL$RANGE_HIGH %RANGE See Advanced Commands Chapter

PPL$RANGE_LOW %RANGE See Advanced Commands Chapter

PPL$TEKNME TEKNME The name of the tektronix file.

PPL$VIEW_X VPOINT X viewpoint (from a WIRE plot)

PPL$VIEW_Y VPOINT Y viewpoint (from a WIRE plot)t

PPL$VIEW_Z VPOINT Z viewpoint (from a WIRE plot)

PPL$WIDTH SIZE Width of the box.

PPL$XFACT(n) TRANSXY Xfact for line n.

PPL$XLEN AXLEN Length of X axis.

PPL$XOFF(n) TRANSXY Xoff for line n.

PPL$XORG ORIGIN Distance between origin and left edge.

PPL$XFIRST(n) - X value for first data point in line n.

PPL$XLAST(n) - X value for last data point in line n.

PPL$XMAX RD Xmax of contour grid

PPL$XMIN RD Xmin of contour grid

PPL$XMAX(n) - Xmax for valid data in line n.

PPL$XMIN(n) - Xmin for valid data in line n.

PPL$YFACT(n) TRANSXY Yfact for line n.

PPL$YLEN AXLEN Length of Y axis.

PPL$YOFF(n) TRANSXY Yoff for line n.

PPL$YORG ORIGIN Distance between origin and bottom
edge.

PPL$YFIRST(n) - Y value for first data point in ine n.

PPL$YLAST(n) - Y value for last data point in line n.

PPL$YMAX RD Ymax of contour grid

PPL$YMIN RD Ymin of contour grid

PPL$YMAX(n) - Ymax for valid data in line n.

PPL$YMIN(n) - Ymin for valid data in line n.

PPL$ZMAX - Zmax for valid contour data.

PPL$ZMIN - Zmin for valid contour data.

In addition to the PPLUS symbols, Ferret sets other symbols on startup or when plotting commands
are issued. They are summarized here:

SYMBOL FERRET COMMAND DESCRIPTION

FERRET_VERSION Ferret startup the Ferret version

FERRET_PLATFORM Ferret startup the platform Ferret is running o

BYTEORDER Ferret startup gives "BIG" or "LITTLE" according to
the endianness of the CPU

SESSION_DATE Ferret startup date the current Ferret session started

SESSION_TIME Ferret startup time the current Ferret session started

LABTIT plot commands default title label; if title is set with
/TITLE or PPL TITLE, this new title is
stored in a moveable lable

LABX plot commands label for horizontal axis

LABY plot commands label for vertical axis

LABn plot commands nth moveable label

XAXIS_MIN plot commands data value corresponding to the start of the
horizontal axis

XAXIS_MAX plot commands data value corresponding to the end of the
horizontal axis

YAXIS_MIN plot commands data value corresponding to the start of the
vertical axis

YAXIS_MAX plot commands data value corresponding to the end of the
vertical axis

LABKEY line PLOT, POLYGON text for key of latest line or polygon put
on the plot

VP_HEIGHT SET VIEWPORT height of current viewport

VP_WIDTH SET VIEWPORT width of current viewport

VP_XLO SET VIEWPORT lower x corner of viewport, as defined by
DEFINE VIEWPORT/XLIM=xlo:xhi

VP_XHI SET VIEWPORT upper x corner of viewport, as defined by
DEFINE VIEWPORT/XLIM=xlo:xhi

VP_YLO SET VIEWPORT lower y corner of viewport, as defined by
DEFINE VIEWPORT/YLIM=ylo:yhi

VP_YHI SET VIEWPORT upper y corner of viewport, as defined by
DEFINE VIEWPORT/YLIM=ylo:yhi

VP_RT_MARGIN SET VIEWPORT width of right margin(see ppl$xorg for left
margin)

VP_TOP_MARGIN SET VIEWPORT width of top margin(see ppl$yorg for
lower margin)

VP_SCALE SET VIEWPORT shrinking or expansion factor (see
DEFINE VIEWPORT/TEXT, p. 327)

LEV_TEXT CONTOUR, SHADE command argument used to set levels.

LEV_MIN CONTOUR, SHADE minimum contour level used

LEV_MAX CONTOUR, SHADE maximum contour level used

LEV_NUM CONTOUR, SHADE number of levels used

LEV_DEL CONTOUR, SHADE delta-value between levels

Ch6 Sec10. MAP PROJECTIONS AND CURVILINEAR
COORDINATES

Ch6 Sec10.1. Three-argument (curvilinear) version of SHADE, FILL,

CONTOUR, and VECTOR

The SHADE, FILL, CONTOUR and VECTOR commands now have a 3-argument mode which
allows them to create output in "curvilinear" coordinates. This allows for easy generation of output
plots using sigma coordinates as well as the application of various map projections. A typical
command line entry will look like:

yes? SHADE sst, x_page, y_page

yes? VECTOR/OVER/PEN=1 uwnd, vwnd, x_page, y_page

where the last two arguments, x_page(i,j) and y_page(i,j), must be (at least) 2-
dimensional grids which specify the X page (horizontal) position and Y page (vertical) position for
each (i,j) index pair. The page positions may be in any units; Ferret will scale the plot
according to the ranges of values in the position fields.

Notes:

1. The default axis labeling for the 3-argument commands will be the ranges of the position fields:
inappropriate when map projections are being used. The /NOAXIS qualifier is provided for this
purpose.

The /NOAXIS qualifier causes the axes and axis labels to be omitted from the plot. The qualifier
has been added to support the curvilinear coordinate and map projection capabilities of the 3-
argument versions of SHADE, FILL, CONTOUR and VECTOR in which linear axes are
inappropriate.

2. In the 3-argument SHADE syntax you can specify either the coordinates of the points or the
coordinates of the cell boundaries. In the command

yes? SHADE values, xcoords, ycoords

say that nVx is the size of the "x" dimension of the values argument, and nCx is the size of the
"x" dimension of the coordinate arguments.

 If nCx = nVx then the xcoords argument is presumed to give the locations of the points in the
values argument and (as you say), the boundaries between points are computed to be the
midpoints.

However, if nCx = nVx + 1 then the xcoords and ycoords arguments are presumed to give the
locations of the boundaries. For an example see the FAQ on Using the 3-argument SHADE
command. In all cases the size of the xcoords argument must match the size of the ycoords
argument.

http://www.ferret.noaa.gov/Ferret/FAQ/graphics/curvilinear_edges.html
http://www.ferret.noaa.gov/Ferret/FAQ/graphics/curvilinear_edges.html

3. There is an alternative to the 4-argument VECTOR command. The script mp_poly_vectors sets
up to plot vectors in curvilinear coordinates using filled polygons. See the script
poly_vec_demo.jnl for a demonstration of this capability.

Ch6 Sec10.2. Gridded data sets on curvilinear coordinates

If a given gridded variable is defined on a curvilinear coordinate system, then one need only
provide the X and Y coordinate fields in the 3-argument SHADE or FILL command to accurately
depict the field. For example, if a data set contained a variable TEMP, which was Nx x Ny in the
longitude-latitude plane, and the data set also contained variables LON_POSITION and
LAT_POSITION of the same size, then the command:

yes? SHADE TEMP, LON_POSITION, LAT_POSITION

would render the curvilinear plot.

Ch6 Sec10.3. Layered (sigma) coordinates

The capability to render curvilinear coordinates allows Ferret to display sigma coordinate fields
without interpolating or regridding the variable to be displayed.

In this example the variable flow is defined on the gg grid where the Z axis is in layers. To display
the field we need only create multidimensional fields specifying the relative positions of (i,j) pairs
and use the new curvilinear coordinate commands (Figure 6_10):

yes? LET depth = h[k=@rsum]-h/2
yes? SET VARIABLE/TITLE="DEPTH function"/UNIT=meters depth
yes? ! regrid 'Y' to the data grid
yes? LET ygg = y[g=gg]
yes? SET VARIABLE/TITLE="Y"/UNIT=kilometers ygg
yes? SHADE flow[x=0,l=1], ygg, depth[x=0,i=1]

For a detailed example illustrating the use of curvilinear coordinates to analyze sigma-coordinate
fields see the Ferret FAQ Entry, How to handle sigma coordinate output in Ferret.

Ch6 Sec10.4. Map Projections

Along with general capabilities for curvilinear coordinates, version 4.9 of Ferret and later provide a
series of scripts for many common map projections.

Each map projection script will create the following variables:

mp_central_meridian central longitude calculated from the currently set region

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig10.gif
http://www.ferret.noaa.gov/Ferret/FAQ/data_management/sigma_coordinate_demo.html

mp_standard_parallel central latitude calculated from the currently set region

x_page two dimensional array mapping X world coordinates to page
coordinates

y_page two dimensional array mapping Y world coordinates to page
coordinates

mp_mask mask two hide "back side" data in orthographic or other 3-D
projections

Ch6 Sec10.4.1. Using Map Projection scripts

To create output with a particular map projection you must do the following:

1. run the map projection script

2. associate the variable's grid with the projection: set grid var

3. adjust the window aspect ratio (if desired)

4. multiply the variable of interest by mp_mask (required for "3-D" projections)

5. give the three-argument plotting command

Example: (Figure 6_11)

yes? USE coads_climatology
yes? SET REGION/L=1
yes? GO mp_hammer
yes? GO mp_grid sst
yes? GO mp_aspect
yes? SHADE/NOAXIS sst*mp_mask, x_page, y_page

Ch6 Sec10.4.2. Overlays with Map Projections

Overlays can be drawn once a map projection script has been run. To add a filled land mask, sea
level pressure and wind vectors onto our SST map we would issue the following commands
(Figure 6_12):

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig11.gif

...
yes? GO mp_grid uwnd
yes? GO mp_fland
yes? VECTOR/OVER/PEN=1 uwnd*mp_mask, vwnd*mp_mask, x_page, y_page
yes? GO mp_grid slp
yes? CONTOUR/OVER/PEN=5 slp*mp_mask, x_page, y_page

If, instead, we wished to overlay sea level pressure for the South Atlantic only, we would need to
take advantage of the mp_central_meridian and mp_standard_parallel variables.
Normally, the map projection scripts calculate the central meridian and standard parallel from the
currently set region and generate the x_page and y_page coordinate transformations
accordingly. When we overlay a subregion, we need to rerun the map projection script and pass in
values for mp_central_meridian and mp_standard_parallel so that they are match
the previous values and are not calculated from the subregion associated with the overlay. (Figure
6_13)

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig12.gif

yes? USE coads_climatology
yes? SET REGION/L=1
yes? GO mp_hammer
yes? GO mp_grid sst
yes? GO mp_aspect
yes? SHADE/NOAXIS sst*mp_mask, x_page, y_page
yes? GO mp_fland
yes? LIST mp_central_meridian, mp_standard_parallel
 LONGITUDE: 20E to 20E(380)
 LATITUDE: 90S to 90N
Column 1: MP_CENTRAL_MERIDIAN is (MP_X[I=@MAX] + MP_X[I=@MIN])/2
Column 2: MP_STANDARD_PARALLEL is (MP_Y[J=@MAX] + MP_Y[J=@MIN])/2
 MP_CENTRMP_STAND
I / *: 200.0 0.0000
yes? GO mp_hammer 200 0
yes? SET REGION/X=60w:20e/Y=45s:0n
yes? GO mp_grid slp
yes? CONTOUR/OVER slp, x_page, y_page

Note: Had we used go mp_hammer 200 0 in the beginning we would not have had to rerun
mp_hammer.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch6_fig13.gif

Ch6 Sec10.4.3. Map Projection scripts

Here is the list of map projection scripts delivered with Ferret. (The techniques used are quite
general and can be applied to most map projections.)

Ferret script Projection name

mp_bonne.jnl Bonne

mp_craster_parabolic.jnl Craster Parabolic

mp_eckert_greifendorff.jnl Eckert Grifendorff

mp_eckert_iii.jnl Eckert III

mp_eckert_v.jnl Eckert V

mp_hammer.jnl Hammer

mp_lambert_cyl.jnl Lambert Cylindrical Equal Area

mp_mcbryde_fpp.jnl McBryde Flat Polar Parabolic

mp_orthographic.jnl Orthographic

mp_plate_caree.jnl Plate Caree

mp_polyconic.jnl Polyconic

mp_sinusoidal.jnl Sinusoidal

mp_stereographic_eq.jnl Stereographic Equatorial

mp_stereographic_north.jnl Stereographic North

mp_stereographic_south.jnl Stereographic Soutth

mp_vertical_perspective.jnl Stereographic South

mp_vertical_perspective.jnl Vertical Perspective

mp_wagner_vii.jnl Wagner VII

mp_winkel_i.jnl Winkel I

Here is the list of utility scripts that support curvilinear coordinates

Ferret script Function

mp_demo.jnl demonstration of various map projections

mp_fland.jnl curvilinear version of fland.jnl

mp_graticule.jnl creates a graticule (lines of longitude and latitude) over the whole
globe or any portion

mp_grid.jnl Associates a data grid with a predefined map projection.

mp_label.jnl correctly places labels using lat-lon coordinates

mp_land.jnl curvilinear version of land.jnl

mp_land_stripmap.jnl creates a land-centric interrupted map using the current projection

mp_line.jnl correctly plots user lat-lon data on the map

mp_ocean_stripmap.jnl creates an ocean-centric interrupted map using the current projection

mp_polymark overlays "map projected" polygons

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 7: HANDLING STRING DATA:
STRING VARIABLES AND "SYMBOLS"

Ferret offers a variety of tools for manipulating strings through the use of "symbols"
(variables defined to be strings). In addition, beginning with Version 5.4, string
variables are supported, with much the same syntax as for numeric variables.

Ch7 Sec1. STRING VARIABLES

String variables are defined using DEFINE VARIABLE (or its alias LET). They can be
read from and written to NetCDF files. Arrays of strings may be defined and a limited
number of algebraic operations are defined for string variables. They can be passed to
go scripts and functions. Grave accents around a scalar string return the string.

yes? LET astring = "hello everyone"
yes? LIST/NOHEAD astring
 "hello everyone"
yes? message `astring`
!-> message hello everyone
hello everyone
 Hit Carriage Return to continue

Ch7 Sec1.1. String arrays

Strings in arrays may be of variable length. The syntax {"a","b","c"} denotes an array
of strings. Two commas in a row denotes a null (missing value) string. Single and
double quoted strings are both allowed, but must match for an individual string, e.g. 'P"
is not valid.

Examples: the following define and list valid string arrays:

yes? LET a = {"s1","s2", ,"s3"}

yes? LIST a

 {"s1","s2", ,"s3"}

 1 / 1:"s1"
2 / 2:"s2"
3 / 3:""
4 / 4:"s3"

yes? LET b = {, 'string1','s2',,'cccc'}
yes? LIST/i=3:5 b
 {, 'string1','s2',,'cccc'}
3 / 3:"s2"
4 / 4:""
5 / 5:"cccc"

yes? LET c = {'p', 'q', 'a longer string'}
yes? LIST/NOHEAD/ORDER=x c
 "p" "q" "a longer string"

Ch7 Sec2. STRING FUNCTIONS

A number of functions are available for working with string variables. They are
described in the following sections. See also the section later in this chapter, "PLOT+
string editing tools" (p. 219) for more ways to manipulate

Ch7 Sec2.1. STRCMP(string1, string2)

string1: string
string2: string
result: real

Compares two strings or string arrays. It computes the numerical difference in ASCII
character value for the first character that differs between the two strings returns a
number, > 0 if string1 > string2, 0 if they are equal and < 0 if string1 < string2.

Examples:

yes? list strcmp("b",{"a","b","c"})
 VARIABLE : STRCMP("b",{"a","b","c"})
 SUBSET : 3 points (X)
1 / 1: 1.000
2 / 2: 0.000
3 / 3: -1.000

yes? list strcmp({"a","b","c"},YSEQUENCE({"a","b","c"}))
 VARIABLE :
STRCMP({"a","b","c"},YSEQUENCE({"a","b","c"}))
 SUBSET : 3 by 3 points (X-Y)
 1 2 3
 1 2 3
1 / 1: 0.000 1.000 2.000
2 / 2: -1.000 0.000 1.000
3 / 3: -2.000 -1.000 0.000

yes? let a = "a longer string"
yes? list strcmp (a,"a longer stringg")
 VARIABLE : STRCMP (a,"a longer stringg")
 -103.0

Ch7 Sec2.2. STRLEN(string1)

string1: string
result: real

Returns the length of the string passed in string string1

Ch7 Sec2.3. UPCASE(string1)

string1: string
result: string

Returns the string passed in string string1 in all upper case characters

Ch7 Sec2.4. DNCASE(string1)

string1: string
result: string

Returns the string passed in string string1 in all lower case characters

Ch7 Sec2.5. STRINDEX(string1, substring)

string1: string
substring: string
result: real

Locate first occurrence of substring in string1. Returns a 0 if substring doesn't exist in
string1. If substring contains a zero-character string (i.e. ""), the function returns 1.

Ch7 Sec2.6. STRRINDEX(string1, substring)

string1: string
substring: string
result: real

Locates last occurence of string substring in string1. Returns a 0 if substring doesn't
exist in string1. If substring contains a zero character string (i.e. ""), the function returns
the length of string1

Ch7 Sec2.7. SUBSTRING(string1, offset, len)

string1: string

offset: integer
len: integer
result: string

Returns substring of length len from string string1 beginning from character offset in
string1. If offset is 0, or if offset is greater than the length of string string1, a NULL
value is returned. If length len exceeds the total length of string string1, the value of
string string1 starting at offset is returned.

Ch7 Sec2.8. STRCAT(string1, str2)

string1: string
string2: string
result: string

Append a copy of string string2 onto string string1.

Ch7 Sec2.9. STRFLOAT(string1)

string1: string
result: real

Return float value of string string1 (e.g. STRFLOAT("3.14"))

Ch7 Sec2.10. SPAWN command

The SPAWN command executes a Unix system command and returns the result in a
string array. The syntax SPAWN:"command" inside a string array definition allows the
output of a Unix command to be mixed with other strings.

Examples:

LET a = {"first.nc", SPAWN:"ls *.nc","last.nc"}

Say we want to check whether a file is in the directory. We do not want a null result, so
start with a dummy string. If "myfile.nc" exists, there will be 2 entries in array a.

yes? LET a = {"dummy", SPAWN:"ls myfile.nc"}

yes? LET nfiles = `a,RETURN=IEND`

yes? IF `nfiles EQ 2` THEN ...

Ch7 Sec2.11. Algebraic operations with string variables.

A number of algebraic operations are available for string variables. They are described
in the following sections.

Ch7 Sec2.11.1. Logical operators with strings

The operators EQ, LT, LE, ... can be applied to string variables and arrays. These
operators are case-insensitive (functions will be provided later that are case-sensitive
and include UPCASE, DNCASE)

Examples:

yes? LIST/NOHEAD {"a","b","c"} EQ {"A","B","C"} ! case insensitive
1 / 1: 1.000
2 / 2: 1.000
3 / 3: 1.000

yes? LIST/NOHEAD"b" GT {"a","b","c"}
1 / 1: 1.000
2 / 2: 0.000
3 / 3: 0.000

Ch7 Sec2.11.2. Shift transformation of string arrays

The shift transformation can be applied to string arrays.

For example:

yes? LET a = {"a","b","c","d"}
yes? LIST a[i=@SHF]
 {"a","b","c","d"}
 shifted by 1 pts on X
1 / 1:"b"
2 / 2:"c"
3 / 3:"d"
4 / 4:""
yes? LIST a[i=@SHF:-1]
 {"a","b","c","d"}
 shifted by -1 pts on X
1 / 1:""
2 / 2:"a"
3 / 3:"b"
4 / 4:"c"

Ch7 Sec2.11.3. Strings in IF-THEN-ELSE

IF cond THEN string_array1 ELSE string_array2

Example:

yes? LIST/NOHEAD IF {0,1} THEN "hello" ELSE "goodbye"
1 / 1:"goodbye"
2 / 2:"hello"

Ch7 Sec2.11.4. String concatenation with "+":

Examples:

yes? let a = "good" + "bye"

yes? LIST/NOHEAD YSEQUENCE({"now","then"})+", " + (if {0,1} THEN
"hello"+", ") + "friend"
1 / 1:"now, friend" "now, hello, friend"
2 / 2:"then, friend" "then, hello, friend"

Ch7 Sec2.11.5. Strings as Function arguments

A few functions also take strings as arguments. String arguments must be enclosed in
double quotes. For example, a function to write variable "u" into a file named
"my_output.v5d", formatted for the Vis5D program might be implemented as

LOAD WRITE_VIS5D("my_output.v5d", a)

SAMPLE* functions may take string or numerical arrays as arguments

 Example:

yes? LIST/NOHEAD SAMPLEI({"a","b","c","d","e","f"},{3,2,,1})
1 / 1:"c"
2 / 2:"b"
3 / 3:""
4 / 4:"a"

yes? LIST/NOHEAD SAMPLEJ(YSEQUENCE ({"a","b","c","d","e","f"}),
{3,2,,1})
1 / 1:"c"
2 / 2:"b"
3 / 3:""
4 / 4:"a"

Ch7 Sec2.11.6. Regridding string arrays

The regridding transformations @ASN, @XACT, @NRST can be used with character
data.

Examples:

yes? LET a = {spawn:"ls *.nc"}
yes? LIST a
 {SPAWN:"ls *.nc"}
1 / 1:"d1.nc"
2 / 2:"d2.nc"
3 / 3:"d3.nc"
4 / 4:"d4.nc"
5 / 5:"d5.nc"
6 / 6:"d6.nc"
7 / 7:"d7.nc"

yes? DEFINE AXIS/X=0.1:0.7:.1 xasn
yes? LIST a[gx=xasn@ASN]
 {SPAWN:"ls *.nc"}
 regrid: 0.1 delta on X@ASN
0.1 / 1:"d1.nc"
0.2 / 2:"d2.nc"
0.3 / 3:"d3.nc"
0.4 / 4:"d4.nc"
0.5 / 5:"d5.nc"
0.6 / 6:"d6.nc"
0.7 / 7:"d7.nc"

yes? DEFINE AXIS/X=1:6:.5 xxact
yes: LIST a[gx=xxact@XACT]
 {SPAWN:"ls *.nc"}
 regrid: 0.5 delta on X@XACT
1 / 1:"d1.nc"
1.5 / 2:""
2 / 3:"d2.nc"
2.5 / 4:""
3 / 5:"d3.nc"
3.5 / 6:""
4 / 7:"d4.nc"
4.5 / 8:""
5 / 9:"d5.nc"

5.5 / 10:""
6 / 11:"d6.nc"

yes? DEFINE AXIS/X=1:6:.4 xnrst
yes? LIST a[gx=xnrst@NRST]
 {SPAWN:"ls *.nc"}
 regrid: 0.4 delta on X@NRST
1 / 1:"d1.nc"
1.4 / 2:"d1.nc"
1.8 / 3:"d2.nc"
2.2 / 4:"d2.nc"
2.6 / 5:"d3.nc"
3 / 6:"d3.nc"
3.4 / 7:"d3.nc"
3.8 / 8:"d4.nc"
4.2 / 9:"d4.nc"
4.6 / 10:"d5.nc"
5 / 11:"d5.nc"
5.4 / 12:"d5.nc"
5.8 / 13:"d6.nc"
6.2 / 14:"d6.nc"

Ch7 Sec2.12. NetCDF input and output of string data

String variables can be input and output to NetCDF files. In the file the string axis is
the fastest moving dimension and all strings are the same length (equal to the maximum
length of the strings being written). Extra character spaces are padded with nulls. If
 variable length strings are written out, then when read back they will again be variable
length.

Example:

yes? SAVE/CLOBBER/FILE=test_string.cdf/HEADING=enhanced a[i=2:4]

Ch7 Sec3. SYMBOL COMMANDS

The following are the relevant commands:

DEFINE SYMBOL

 usage:

 DEFINE SYMBOL symbol_name = string

SHOW SYMBOL

 usage:

 SHOW SYMBOL/ALL

 SHOW SYMBOL symbol_name

 SHOW SYMBOL partial_name

CANCEL SYMBOL

 usage:

 CANCEL SYMBOL/ALL

 CANCEL SYMBOL symbol_name

Legal symbol names must begin with a letter and contain only letters, digits,
underscores, and dollar signs.

To invoke symbol substitution—the replacement of the symbol name with its (text)
value—within a Ferret command include the name of the symbol preceded by a dollar
sign in parentheses.

For example,

yes? DEFINE SYMBOL hi = hello everyone
yes? MESSAGE ($hi) ! issues "hello everyone" msg

It is also possible to nest symbol definitions, as the following commands illustrate:

yes? DEFINE SYMBOL label_2 = My test label
yes? DEFINE SYMBOL number = 2
yes? SAY ($label_($number))
 My test label

Ch7 Sec4. AUTOMATICALLY GENERATED SYMBOLS

A number of useful symbols are automatically defined whenever Ferret sets up a plot.
Following any plotting command issue the command SHOW SYMBOLS/ALL to see a
list. Consult the PLOT PLUS for Ferret Users Guide (section "General Global
Symbols") for detailed descriptions of the plot symbols. For example, if we wish to
place a label “hello” at the upper right corner of a plot we might do the following

yes? PLOT/I=1:100 SIN(I/6)
yes? LABEL/NOUSER (pplxlen) (pplylen) 1 0 .2 hello

This labeling procedure would work regardless of the aspect ratio of the plot. Use the
command SHOW SYMBOL/ALL to see the symbols (and see "General Global
Symbols" in the PLOT+ Users Guide).

Ch7 Sec5. USE WITH EMBEDDED EXPRESSIONS

When used together with Ferret embedded expressions symbols can be used to perform
arithmetic on the plot geometry. For example, this command will locate the plot title in
bold at the center of a plot regardless of the aspect ratio:

yes? LABEL/NOUSER `(pplxlen)/2` `(pplylen)/2` 0 0 .2
@AC($labtit)

Ch7 Sec6. ORDER OF STRING SUBSTITUTIONS

The above example illustrates that the order in which Ferret performs string
substitutions and evaluates immediate mode expressions in the command line is
significant. The successful evaluation of the embedded expression
`(pplxlen)/2` requires that (pplxlen) is evaluated before attempting the
divide by 2 operation. The order of Ferret string substitutions is as follows:

1. substitute "GO" command arguments of the form "$1", "$2", ...

2. substitute symbols of the form ($symbol_name) (discussed here)

3. substitute command aliases

4. substitute immediate mode expressions. (But see example 3 below).

Example 1

If the script snoopy.jnl contains

DEFINE SYMBOL fcn = $1
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=("Result is ",$2)
ANSWER `($fcn)(($3^2)/2)`+5

then the command

yes? GO snoopy EXP F5.2 2.25

would evaluate to

DEFINE SYMBOL fcn = EXP
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=("Result is ",F5.2)
LIST/NOHEAD/FORMAT=("Result is ",F5.2) `EXP((2.25^2)/2)`+5

and would result in Ferret output of "Result is 17.57."

Example 2

We can use grave accent syntax and string variables to substitute the string into the
command line.

yes? LET my_reg = "X=0:180,Y=-40:40,L=1"
yes? SHADE sst[`my_reg`]

Example 3

Immediate mode substitution of a string variable may be used to set the values of
qualifiers. However the region qualifiers (/X=/Y=etc.) on a command are used to set the
context for the grave accent expression. So Ferret parses command qualifiers before it
parses grave accent expressions. Thus we can use this syntax to set a region:

yes? let xreg = "40:180"

yes? let yreg = "60S:42S"

yes? set region/x=`xreg`/y=`yreg`

But including the qualifier name in the string variable is NOT valid (the qualifier is
parsed BEFORE the grave accent expression is substituted, so Ferret would issue the
error that `my_region` is an unknown qualifier).

yes? !THE FOLLOWING SYNTAX IS NOT VALID

yes? LET my_region = "x=40:180/y=-60:-42"; set region/`my_region`

Ch7 Sec7. CUSTOMIZING THE POSITION AND STYLE OF
PLOT LABELS

All of the plot labels generated by Ferret are automatically defined as symbols. This
includes the title ($labtit), X and Y axis labels ($labx),($laby), as well as the position
labels (latitude, longitude, depth, time), which are normally placed at the upper left on a
plot (see "Labels," p. 173). Sometimes it is desirable to change the location, size or

fonts of these labels. The symbol facility makes it possible to do this in a way that is
independent of the particular label strings or plot aspect ratio. See the demonstration
script symbol_demo.jnl for an example.

Ch7 Sec8. USING SYMBOLS IN COMMAND FILES

Often in Ferret command files the identical argument substitutions must be repeated at
several points in the file. Using symbols it is possible to write "cleaner" Ferret scripts in
which the argument substitution occurs only once—to define a symbol which is used in
place of the argument thereafter. See the demonstration script symbol_demo.jnl for an
example.

Ch7 Sec9. PLOT+ STRING EDITING TOOLS

The PLOT+ program provides a variety of tools for editing symbol strings. See the
PLOT+ Users Guide for further information (p. 512). The special functions manipulate
and reformat character strings.

Note that many of these functions are handled directly by Ferret string functions such as
STRINDEX, STRLEN, SUBSTRING, etc (p. 210).

The general format is SET sym $function(arg1, arg2,...). The functions are:

$EDIT(symbol,argument) Edit a symbol: change to uppercase, remove
extra blanks, or remove all blanks

$EXTRACT(start,length,symbol) Extracts selected characters from the input
string.

$INTEGER(symbol) Converts a number to integer format

 $LENGTH(symbol) Returns the length of the input string

$LOCATE(substring,symbol) Locates a substring in the input string

$ELEMENT(position,delimiter,symbol) Extracts an element from an input string in
which the elements are separated by a
specified delimiter.

Example:

yes? DEFINE SYMBOL test = my string
yes? PPL SET upper_test $EDIT(test,COMPRESS)
yes? SHOW SYMBOL upper_test
UPPER_TEST = "my string"

Ch7 Sec10. SYMBOL EDITING

Symbols may be edited and checked using the same controls that apply to journal file
arguments.

The section of this users guide entitled "Arguments to GO tools" (p 25) describes the
syntax for checking and editing arguments. The identical syntax applies to symbols. As
with the GO tool arguments (e.g., "$4"), all string manipulations are case insensitive.

In brief, the capabilities include:

default strings

If a symbol is undefined a default value may be provided using the pattern
($my_symbol%my default string%). For example,

($SHAPE%XY%)

check against list of acceptable values

A list of acceptable string values may be provided using the pattern

($my_symbol%|option 1|option 2|%). For example,

($SHAPE%|X|Y|Z|T|%)

will ensure that only 1-dimensional shapes (X, Y, Z, or T) are acceptable.

string substitution

Any of the optional string matches provided can invoke a substitution using the pattern
($my_symbol%|option 1>replacement|%). For example,

($SHAPE%|X>I|Y>J|Z>K|T>L|%)

will substitute I for X or J for Y, etc.

Asterisk ("*") provides default substitution

The asterisk character matches any string. For example,

($SHAPE%|X|Y|Z|T|*>other%)

will always result in "X," "Y," "Z," "T," or "other."

Asterisk ("*") provides limited string editing

The asterisk character, when used on the right hand side of a string substitution, inserts
the original symbol contents

($SHAPE%|*>The shape is *|%)

error message control

An error message can be provided if the symbol is undefined or doesn't match any
options. The pattern for this is
($my_symbol%|option 1|option 2|<error message text %). For example,

($SHAPE%|X|Y|Z|T|<Not a 1-dimensional shape%)

Ch7 Sec11. SPECIAL SYMBOLS

PPLUS defines a number of global symbols which are available to the user. They are
documented in the PPLUS Users Guide, section 7.3, and listed in the chapter
"Customizing Plots", section PPLUS special symbols (p.198).

There are a few symbols, generated automatically by plots, which are not documented
in the PLOT PLUS for Ferret Users Guide. Those are shown like all symbols by SHOW
SYMBOLS, but cannot be redefined by the user.

PPL$XPIXEL
PPL$YPIXEL

the number of pixels in the horizontal (X) and vertical (Y) size of the current Ferret
output window. Note: these are "0" if there is no current window -- hence they can be
used as a test of whether there is an open window.

BYTEORDER

gives "BIG" or "LITTLE" according to endianness of the CPU

FERRET_VERSION

FERRET_PLATFORM

give the Ferret version and the platform Ferret is running on.

SESSION_DATE
SESSION_TIME

gives the date and time when the current session began.

http://www.ferret.noaa.gov/Ferret/Documentation/PPLUS_Users_Guide/pplus_users_guide.html

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 8: WORKING WITH SPECIAL
DATA SETS

Ch8 Sec1. WHAT IS NON-GRIDDED DATA?

Many data sets which are not normally regarded as "gridded" can nonetheless be
managed, analyzed, and visualized effectively in a gridded data framework. Track lines,
"point data", etc. are common examples of "non-gridded" data. Profiles and time series,
although they are individually simple one-dimensional grids, have a non-gridded
structure when considered as a collection, which is often essential.

This chapter addresses a number of classes of non-gridded data sets and offers
approaches that make it straightforward to work with these data types in Ferret's gridded
data framework. The approaches are all conceived to facilitate a fusion of these data
types—so that multiple data types may be easily combined in calculations..

"Point data" refers to collections of values at scattered locations and times. An example
would be the column burden of oceanic NO3 and the scattered locations and times at
which the measurements were made.

● If at each point of the data scattered there is a vertical profile of values then see
COLLECTIONS OF VERTICAL PROFILES (p. 227).

● If at each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 230).

● If at each point of the data scattered there is a 2-dimensional grid in the ZT plane
then see COLLECTIONS OF TIME SERIES (p. 230).

● If at each point of the data scattered there is a time series of values then see
COLLECTIONS OF TIME SERIES (p. 230).

Ch8 Sec2. POINT DATA

In a gridded context point data is best viewed as a collection of 1-dimensional variables,
where the axis of each variable is the index value, 1, 2, 3, ... of the individual point in
the scatter. Thus, continuing our example of an oceanic NO3 data set, we would want to
view this as four variables, longitude, latitude, date, and burden, where each variable
was defined on a one-dimensional axis of earthquake number. Typically, this sort of

data is organized in a table of the form

Index longitude latitude year month day N03

1 160 30 1968 11 -999 6.2

2 33.1 60.2 1992 5 13 5.5

...

Ch8 Sec2.1. Getting point data into Ferret

Since point data sets are most commonly available in table form, where the columns of
the table are the variables and each row of the table is a separate point. In the chapter
"Data Set Basics", section "Reading ASCII Files" (p. 45), example 2 and subsequent
examples show how such a file might be read into Ferret.

For example, let us suppose that the file above is introduced to Ferret with the
command

 yes? FILE/VAR="index,lon,lat,yr,mn,day,NO3"/SKIP=1 my_data_file.dat
yes? SHOW DATA my_data_file.dat

 currently SET data sets:
 1> ./my_data_file.dat (default)
 name title I J K
 L
 LON LON 1:20480
 …
 LAT LAT 1:20480
 …
 YR YR 1:20480
 …
 MN MN 1:20480
 …

 DAY DAY 1:20480
 …
 NO3 NO3 1:20480
 …

Note that the SET VARIABLE command would normally be used as well to assign
titles, units, and missing value flags to the variables.

Also note that until the first data is actually requested from the file, Ferret does not
know the size of the file. The /GRID= option may be used to tell Ferret what size to
expect. Lacking a /GRID specification the "1:20480" is the size of the default grid "EZ."
After the first data access SHOW GRID will reveal the true size of the file, instead. If
the size still appears to be 20480 it may be that the default grid EZ was not large
enough, and the /GRID qualifier must be used to pre-allocate sufficient space.

Ch8 Sec2.2. How point data is structured in Ferret

In table form (above) each column represents a dependent variable; the column for
"burden" and the column for "latitude" have equal status. In many cases this is an
adequate representation. For example, a plot of NO3 burden versus latitude could be
produced with the command

yes? PLOT/VS lat, NO3

To combine point data organized in tables with gridded data sources, say a gridded field
of oceanic temperature two approaches are available. Either the gridded data may be
viewed in the structure of the table, or the scattered data may be viewed in a geo-
referenced 1-dimensional grid structure. The problem to be solved determines which
approach is suitable. The next two sections describe these two approaches.

Ch8 Sec2.2.1. Working with dates

Ferret V5.0 does not understand formatted dates inside of generic data ASCII files. To
use the dates intelligibly inside of Ferret you

1. Need to get the year, month, and day fields broken out separately or provide a Julian
day. SET DATA/FORMAT=DELIMITED (p. 372) is helpful for inputting date
information.

2. Can create a Julian date from year, month, day using function DAYS1900. If a time
origin other that 1-jan-1900 is needed subtract DAYS1900(year0, mon0, day0). For help
in creating the dates, see the FAQ, "How can I create a time axis from variables
containing year, month, day, etc?" at
http://ferret.pmel.noaa.gov/Ferret/FAQ/axes_and_data/time_axis_from_variables.html

3. Can create an axis of dates as done in the preceding latitude axis example.

See the chapter "Grids and Regions", section "Time" (p. 148) and the section in the
chapter "Converting to NetCDF" on "Converting time word data to numerical data" (p.
260) for details of creating time axes.

Ch8 Sec2.3. Subsampling gridded fields onto point locations and
times

Ferret can be used as a tool to extract variables from gridded data sets at time/space
locations to match the scatter of the point data. In this form they may, effectively, be
combined into the table of data read from the ASCII (or binary) file. For example,
suppose we want to obtain values of sea surface temperature at the locations of our NO3
samples, from a climatological annual average SST field. This may be accomplished
simply with

yes? use coads climatology
yes? let ssttav = sst[l=1:12@ave]
yes? let my_lon = lon[d=my_data_file.dat]
yes? let my_lat = lat[d=my_data_file.dat]
yes? LET sst_xy = SAMPLEXY(ssttav, my_lon, my_lat)

Suppose that instead we defined our XY sampling based upon the 12 month time series
of SST grids as in

 yes? LET sst_xy = SAMPLEXY(sst, my_lon, my_lat)

http://ferret.pmel.noaa.gov/Ferret/FAQ/axes_and_data/time_axis_from_variables.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/axes_and_data/time_axis_from_variables.html

The variable sst_xy as defined above would then have a two-dimensional structure:
sample index by 12 months. To sample this in time we use

yes? LET sst_t = SAMPLET_DATE(sst_xy,0,mn,day,0,0,0)

Note that the year is entered simply as 0, since SST is a climatological variable.

In this example we sampled a field in X, Y, and T. The sst data was sampled at each
time. If we were sampling a field which had a Z axis, that axis would be inherited from
the first argument to SAMPLEXY in the same way; it would be sampled at the (x,y)
points at each Z level.

Ch8 Sec2.4. Defining gridded variables from point data

There are functions to interpolate scattered data onto a grid. See the scat2gridgauss and
scat2gridlaplace functions (p. 87 ff). These functions map irregular locations to a
regular grid.

For some calculations one may want to let Ferret know which of the variables are
dependent (measurements) and which are independent (coordinates). For example,
suppose we wish to compute the average column burden of NO3 as a function of
latitude. Burden here is an integral of the concentration NO3 over depth. We will want
to see our variable burden on an axis of latitude.

The steps to do this are

1. In general, the latitude variable will not be sorted into strictly increasing order —
needed to create an axis. Determine the sorting order for latitude using

 yes? LET lat_index = SORTI(lat)

2. Create a latitude grid

 yes? DEFINE AXIS/FROM/NAME=lat_ax/Y/UNITS=degrees SAMPLEI(lat,
lat_index)
 yes? DEFINE GRID/Y=lat_ax glat
 yes? LET NEW = Y[g=glat] ! a dummy variable to use in RESHAPE

below

3. Define your function for the burden based on the variable NO3, on the command
line or using your script my_brdn.jnl.

 yes? GO my_brdn NO3 burden

4. Define a new variable burden_on_lat using this axis

 yes? LET sorted_burden = SAMPLEI(burden, lat_index)
 yes? LET burden_on_lat = RESHAPE(sorted_burden, new)

5. Now, to plot the NO3 burden averaged into 5 degree latitude bands we could use

 yes? PLOT burden_on_lat[Y=60s:30n:5@AVE]

Ch8 Sec2.5. Visualization techniques for point data

Scattered point data can be displayed in a number of ways.

A simple scatter plot showing the locations of points

yes? PLOT/VS lon,lat
yes? GO land

Use GO/help land for an explanation of resolving incompatible longitude encodings,
should they arise.

A scatter plot in which the symbols are colored by value with control over the color
palette and resolution can be made using the polymark.jnl script. For example, to plot
using stars symbols in color levels by 10s use

yes? GO polymark POLYGON/LEV=(0,100,10) lon lat NO3 star.

Type GO/HELP polymark for more options.

See also the chapter "Customizing Plots", section "Map Projections" (p. 201) for
guidance on plotting scattered data. The map projection scripts can be used in
conjunction with the above.

Ch8 Sec3. VERTICAL PROFILES

A single profile, possibly consisting of multiple variables, can be regarded as a simple 1-
dimensional data set. Ferret's plotting and analysis tools apply in a straightforward
manner.

Collections of profiles resemble point data sets in their X,Y, and T structure, however at
each point there is a 1-dimensional Z-axis structure. In general, the Z axes at each point
may differ.

Ch8 Sec3.1. How collections of profiles are structured in Ferret

If the collection of profiles is sufficiently small (say 4 or fewer) then it is
straightforward to handle them simply as 4 separate data sets. The D= qualifier may be
used to designate which profile is being referred to. The IF ... THEN ... ELSE syntax
may be used to combine the profiles into expressions.

As the number of profiles in the collection grows larger, however, it becomes necessary
to merge them into a single structure. Typically, the sequence number of the profile, 1,
2, ...,N, becomes the X axis of the collection. The longitude, latitude, and time of each
profile become dependent variables indexed by the sequence number. The Z structures
of the profiles are blended into a single Z axis by a choice of techniques. The steps to
creating a blended data set then become:

1. Determine the nature of the Z axis to be used and the collection of variables to be
defined on the grid

2. Create an empty grid with the desired structure in a file

3. Populate the file with the profiles, each profile in turn.

The determination of the Z axis structure may be by any of these techniques:

1. Supply an arbitrary Z axis to which all of the individual profiles will be regridded
by linear interpolation. This technique produces a data set which is very easy to work
with and small in size, however, some of the data have been altered by linear
interpolation. The default Ferret regridding (GZ=@LIN) is used for this technique.

2. Create a Z axis which is a superset of the Z axis points from all of the grids. In the
final data set this axis will be sparsely populated, containing only those Z points that
were actually present in each profile.

 This technique produces a data set which is 100% faithful to the original data and
reasonably easy to work with, but may become very large if the number of profiles is
large and the Z axes vary greatly. Ferret "exact match" regridding (GZ=@XACT) is
used for this technique.

3. Do not create a Z axis at all — instead store the Z coordinates as a dependent
variable. The Z axis becomes simply an index counter of length equal to the longest
profile. This technique produces a data set which is 100% faithful to the original data
and of modest size, however it is the most laborious to work with.

The choice of technique depends on the nature of the profile collection and the types of
analysis or visualization to be done. Often it is desirable to combine technique 1, which
is fast and simple with 2 or 3, which can be used for spot checking if there is a question
of data fidelity. If method 3 is chosen (Z coordinates in a dependent variable) the
techniques for handling the variables are very similar to sigma coordinate data,
described in a separate section of this chapter (p. 231).

Ch8 Sec3.2. Getting profile data into Ferret

As of 4/99 the approaches to merging collections of profiles into a single structure are
still "manual." (Data which are stored as global attributes in the input files, as is done in
EPIC files, are lost in this process.) This text describes an example of the manual
process used, where the target Z axis is created arbitrarily and data are interpolated to it.
In this example the profiles are read from ASCII files, so the Z axis of each profile has
to be created. This example does not save the longitude, latitude, and time positions of

the casts.

! for this example we begin by manufacturing some data
! ... pretend this is one of your casts - unequal vertical spacing
LIST/FILE=test_cast.dat/NOHEAD/FORM=(2F)/I=1:10 10*i+randu(i),
sin(i/6)

! create a grid suitable for ALL casts together
! make the points regular in X and Z ... they need not be, however
DEFINE AXIS/DEPTH/Z=0:1000:20/UNIT=meters zall ! Arbitrarty z axis
DEFINE AXIS/X=0:9:1/UNIT="sequence" xall
DEFINE GRID/X=xall/Z=zall gall

! create an empty output file
! if we were reading netCDF files we would create variables to hold
! longitude, latitude, and time (year, month, day).
! A latitude output variable, for example, is created below

LET outvar = 1/0 * x[g=gall] * z[g=gall]
SET VARIABLE/TITLE="My merged var"/UNITS="my units" outvar
SAVE/FILE=all_casts.cdf/ILIMITS=1:10/ZLIMITS=0:1000 outvar
LET LAT = 1/0*X[gx=gall]
SET VARIABLE/TITLE="Latitude"/UNITS="degrees" lat
SAVE/APPEND/FILE=all_casts.cdf/ILIMITS=1:10 lat

! read in a single cast (the fake data we created)
! if we were reading a NetCDF file this block would be unnecessary
FILE/VAR=depth,invar test_cast.dat

! make Z axis for 1 profile
DEFINE AXIS/Z/DEPTH/UNIT=meters z1cast=depth

DEFINE AXIS/X=0:0:1/UNIT="sequence" x1cast ! sequence no. of 1st
cast
DEFINE GRID/X=x1cast/Z=z1cast g1cast
CANC DATA 1

! save first cast interpolated to many-point Z axis
FILE/VAR="-,invar"/GRID=g1cast test_cast.dat
LET outvar = invar[g=gall]
SAVE/APPEND/FILE=all_casts.cdf outvar[I=1]
CANC DATA 1

! if available, output latitude thusly
! LET lat = 0*X[g=gall] + RESHAPE(Y[G=invar],X[gx=gall])
! SAVE/append/file=all_casts.cdf lat[I=1]

! save next cast

DEFINE AXIS/X=1:1:1/UNIT="sequence" x1cast ! X position of 2nd
cast
FILE/VAR="-,invar"/grid=g1cast test_cast2.dat
SAVE/APPEND/FILE=all_casts.cdf outvar[I=2]
CANC DATA 1

! etc for next 8 casts …
! This may be automated with: REPEAT/I=1:10 GO output_one_profile
! where the script output_one_profile.jnl reads profile file names

! from a list

The output data set which we create will be structured as follows:

yes? CANCEL VAR/ALL

yes? USE all_casts
yes? SHOW DATA
 currently SET data sets:
 1> ./all_casts.cdf (default)
name title I J K
 L
OUTVAR My merged var 1:10 ... 1:51
 …
LAT Latitude 1:10
 …

Ch8 Sec3.3. Defining vertical sections from profiles

In the data set created above the profiles may or may not be ordered as needed to create
a valid section. There are many possible ways to order the data. Often more than one
technique is applicable to a single data set. The data may be ordered along a ship track,
ordered by increasing latitude, ordered by path distance along a regression line, etc.

Continuing with the example above, we can order the profiles into increasing latitude
with:

yes? let order = SORTI(lat)
yes? let section = SAMPLEI(outvar, order)

Other definitions of the variable order may be created by straightforward means to apply
other ordering principles.

As defined above, "section" has an X axis which is the values 1, 2, 3,...N from the Ferret
ABSTRACT axis. To cast this on a proper latitude axis, use these two steps:

yes? DEFINE AXIS/Y/UNITS=degrees yax_sect=SAMPLEI(lat, order)
yes? LET ysection = RESHAPE(section,Y[gy=yax_sect]+Z[gz=all])

Ch8 Sec3.4. Visualization and analysis techniques for profile
sections

The variables "section" and "ysection" defined above may be plotted and analyzed with
the normal gridded plot commands. For examples,

yes? CONTOUR section ! contour plot ordered on X=1,2,3,...
yes? FILL ysection ! color contour plot on formatted latitude axis
yes? PLOT/Y=20S/Z=100:500 ysection ! profile at 20 south
yes? PLOT ysection[Z=@loc:20] ! depth of 20 degree isotherm

Ch8 Sec3.5. Subsampling gridded fields onto profile
coordinates

The technique described for sampling grids at scattered point values will work
unmodified for collections of vertical profiles. The Z coordinate of the gridded variable
will be retained unmodified throughout the sampling operations. Regrid the final result

variable to other Z axes as desired.

Ch8 Sec4. COLLECTIONS OF TIME SERIES

Handling of collections of time series is analogous to handling collections of vertical
profiles, described above. The choices of

1. a single interpolated time axis (using the default, GT=@LIN, regridding)

2. a super-set of all times axis (using "exact match," GT=@XACT, regridding)

should be considered. Choice 3, in which time would be handled as an independent
variable, is possible, but awkward, due to the multiplicity of time encodings.

Ch8 Sec5. COLLECTIONS OF 2-DIMENSIONAL GRIDS

Handling collections of 2-dimensional grids (e.g. ZT grids from acoustic current
profilers) is a straightforward extension of the techniques described under collections of
profiles. If the time axes of the input grids are all identical, no additional work is needed
beyond the techniques described there. If the time axes differ then follow the guidance
given under Collections of Time Series, using intermediate variable definitions that
reconcile the time axes into a single uniform axis before saving the input variables into a
merged output file.

Ch8 Sec6. LAGRANGIAN DATA

Lagrangian data (ship tracks, drifters, etc.) is a special case of scattered point data
described in a preceding section. In the terminology of "Defining gridded variables from
point data" Lagrangian data is simply point data organized onto a 1-dimensional time
axis grid.

Ch8 Sec6.1. Visualization techniques for Lagrangian data

Ferret has several visualization tools that specifically address the needs of Lagrangian
data. There are three scripts:

polymark (polymark_demo) marks value-colored symbol at each location

polytube (polytube_demo) creates a line following the Lagrangian track with
color varying according to a Lagrangian variable

trackplot (trackplot_demo) creates a line plot of a Lagrangian variable where the
zero line of the plot follows the Lagrangian track

Overlays of the trackplot script are useful to visualize more than one variable. Run the
demonstration scripts noted above for each tool for an example of its use with
Lagrangian data.

Ch8 Sec7. SIGMA COORDINATE DATA

With sigma coordinate data the vertical coordinate (or layer thickness) is available as a
dependent variable and the Z axis of the sigma-encoded variables is layer number (the Z
index). This is precisely analogous to method 3 of handling collections of profiles,
above.

See also the FAQ on Using Sigma Coordinates.

Ch8 Sec7.1. Visualization techniques for sigma coordinate data

Visualizations of sigma coordinate data in vertical section planes are best handled with
the 3-argument versions of the SHADE, FILL, CONTOUR and VECTOR commands.
See further information in Customizing Plots (, p. 165).

http://www.ferret.noaa.gov/Ferret/FAQ/data_management/sigma_coordinate_demo.html

For visualization of sigma coordinate data in other planes or orientations use the
techniques described in the next section.

Ch8 Sec7.2. Analysis techniques for sigma coordinate data

Analysis of sigma coordinate data, which requires shifting to depth or pressure
coordinates, is facilitated by the function ZAXREPLACE, which converts from layer
number to other vertical coordinate axes. See sigma_coordinate_demo.jnl for an
example. If the data set provides layer thickness rather than depth a depth variable may
be created using integration with @iin.

Ch8 Sec8. CURVILINEAR COORDINATE DATA

By "curvilinear coordinate data" we refer to data which is curvilinear in the XY plane
there. We presume that the X,Y coordinates (typically longitude, latitude) are available
through other dependent variables.

Ch8 Sec8.1. Visualization techniques for curvilinear coordinate
data

Visualizations of curvilinear coordinate data in the XY plane section planes are best
handled with the 3-argument versions of the SHADE, FILL, and Contour commands.
See further information in the chapter "Customizing Plots" (p. 165).

For visualization of curvilinear coordinate data in other planes or orientations use the
techniques described under "Analysis techniques for curvilinear coordinate data."

Ch8 Sec8.2. Analysis techniques for curvilinear coordinate data

Analysis of curvilinear coordinate data may be done in the curvilinear coordinate system
or in a rectilinear (including lat-long) coordinate system. If the analysis is done in the
curvilinear coordinate system, it is the responsibility of the user to ensure that the proper
geometric factor are applied when integrals and derivatives are computed. Converting
other fields to the curvilinear coordinate system is most easily accomplished with the
function SAMPLEXY.

To perform the analysis in a rectilinear coordinate system, the conversion of the
curvilinear data is most easily done with SAMPLEXY_CURV (under
development—6/00).

Ch8 Sec9. POLYGONAL DATA

By "polygonal data" we refer to a class of point data set where each point represents a
polygonal region rather than a single coordinate. An example of polygonal data would
be a value associated with each state in the United States.

Ch8 Sec9.1. Visualization techniques for polygonal data

Visualizations of polygonal data is best handled with the POLYGON command. If the
coordinates of the polygon vertices are available in 2-dimensional arrays, XPOLY and
YPOLY, in which the axes of the arrays are the polygon vertices and the sequence of
polygons the use of the POLYGON command is straightforward. The POLYGON
command can also handle sequences of polygons encoded in 1-dimensional arrays with
missing values separating each polygon.

Ch8 Sec9.2. Analysis techniques for polygonal data

Ferret version 5.0 does not have any tools specifically addressing the analysis of
polygonal data sets. The analysis of these data sets in Ferret requires the creation of a
gridded mask field corresponding to the polygonal regions (an external function could
be written that would create a gridded mask of arbitrary resolution from polygonal

coordinates.)

Once the mask is created, the standard gridded operators for averaging, integrating, etc.
can be used. For example, if variable cal_mask contains a gridded mask of the state of
California on latitude and longitude axes of 10 minute resolution then this definition
would compute the average of a gridded variable, var, over California:

yes? let cal_var = mask * var[g=mask]
yes? let cal_average = cal_var[x=@ave, y=@ave]

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 9: COMPUTING ENVIRONMENT

Ch9 Sec1. SETTING UP TO RUN FERRET

This discussion assumes that Ferret is already istalled on your system. Installation
documentation is available separately from the Ferret Downloads web page

STEP 1

Execute interactively or add to your .login file the Unix C-shell command

% source /usr/local/ferret_paths

(Note: If this command doesn't work consult your system manager, who may have
placed ferret_paths in a different directory.)

The Ferret program requires access to several files and directories. These Unix paths are
stored in environment variables defined by the file "ferret_paths". Your Unix account
must be "made aware" of where the Ferret utilities are located. This is done by adding
to the definition of your environment variable PATH the directory "$FER_DIR/bin".
Unless your system manager has modified the typical setup, this will occur
automatically when you execute the above command.

STEP 2 (personal customization—optional)

Execute the "cp" command below:

% cp $FER_DIR/bin/my_ferret_paths_template \
 $HOME/my_ferret_paths

Then use a text editor to customize my_ferret_paths. Instructions are inside the file.

Some of the Ferret environment variables identify files and directories that are integral
to the Ferret program, but others identify files that you may maintain—your data files,
GO scripts, and palette files, for example. (The environment variables that you may
want to customize are discussed at the end of this section.) To assist in customizing the
Ferret environment variables the template file in the "cp" command, above, has been
provided. The file is self-explanatory.

http://www.ferret.noaa.gov/Ferret/Downloads/ferret_downloads.html

STEP 3

Execute the command below interactively or add it to your .login file.

% setenv DISPLAY node:0.0 e.g., % setenv DISPLAY anorak:0.0

This command sets the environment variable "DISPLAY" to point to the workstation
console or X-terminal where you want Ferret graphical output displayed. In the example
above, graphical output is directed to the screen of workstation "anorak." The X display
must be set for indexed color (a.k.a. pseudo-color); a maximum of 65K colors.

Ch9 Sec2. FILES AND ENVIRONMENT VARIABLES USED
BY FERRET

.ferret—the Ferret initialization file. This optional file holds a list of Ferret commands
that will be executed immediately each time Ferret is started, permitting Ferret to be
tailored to individual needs and styles. The file must be located in your $HOME (login)
directory. A simple way to set up such a file is to enter Ferret, enter the commands that
you want executed each time you enter Ferret, exit Ferret and rename the file "ferret.jnl"
to ".ferret". Thereafter, all commands in ".ferret" will be executed automatically
whenever you enter Ferret.

The following environment variables are defined in the file ferret_paths:

FER_DATA—a list of directories to be searched to locate data files. Usually this list
includes ".", the current directory, and $FER_DSETS/data, a directory of sample data
sets provided with Ferret. Your system manager may have set this variable to include
other data areas as well. This is the list of directories searched to locate NetCDF files.

FER_DESCR—a list of directories to be searched to locate descriptor files. Descriptors
are required by Ferret to access data sets that are in Ferret's "GT" (grids at timesteps) or
"TS" (time series) formats. Usually this list includes ".", the current directory, and
$FER_DSETS/descr, a directory of sample descriptors provided with Ferret.

FER_GRIDS—a list of directories to be searched to locate grid definition files. Data

sets will usually have a grid definition file associated with them so that the grids on
which the data are defined may be known.

FER_DIR—top directory of the Ferret distribution on your system.

FER_DSETS—directory of sample data sets provided with the Ferret distribution.

FER_PALETTE—a list of directories to be searched to locate palette files. Usually this
list includes "." and $FER_DIR/ppl. Note that to assist you in choosing a good palette
for your plot, there is an FAQ, How can I find a good color palette for my plot? at
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

FER_GO—a list of directories to be searched to locate GO scripts. This list usually
includes ".", $FER_DIR/go, $FER_DIR/examples (demonstrations and tutorial), and
$FER_DIR/contrib (user contributions demonstrating various applications; accuracy not
guaranteed).

FER_EXTERNAL_FUNCTIONS—a list of directories to be searched to locate the
shared object files (.so files) for external functions. By default this list includes the
location of the example functions and the functions included with the Ferret
distribution.

Ch9 Sec3. MEMORY USE

Ferret indicates memory problems by issuing the error message "insufficient memory."
 If memory is a problem running Ferret the following suggestions may help:

1) Use the command SET MEMORY/SIZE=nnn to increase the memory cache region
available to Ferret.

2) Use the command SET MODE DESPERATE to determine the threshold size of
memory objects at which Ferret will break a large calculation into fragments. A smaller
argument value will induce stricter memory management but at a penalty in
performance.

3) Use CANCEL MEMORY whenever you are sure that the data referenced thus far

http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html#_TN_Ref_viewaxes_b

by Ferret will not be referenced again. This is particularly appropriate to batch
procedures that use Ferret. This eliminates any memory fragmentation that may be left
by previous commands.

4) Use CANCEL MODE SEGMENTS to minimize the memory usage by graphics
 (on a few X-window systems this may prevent windows from being restored after they
are obscured).

5) When using DEFINE VARIABLE (alias LET) avoid embedding upper and lower
axis bounds within the variable definition. Ferret cannot split up large calculations along
axes when the limits are fixed in the definition. For example,

yes? LET V2=TEMP/10
yes? PLOT/K=1:10 V2

is preferable to

yes? LET V2=TEMP[K=1:10]/10
yes? PLOT V2

6) Try to group together calculations that are on smaller dimensioned objects. For
example, the expression VAR[i=1:100, j=1:100]*2*PI will make less efficient use of
cpu and memory than the expression VAR[i=1:100, j=1:100]*(2*PI). The former
multiplies each of the 10000 points of VAR by 2 and then performs a second
multiplication of the 10000 result points by PI. The latter computes the scalar 2*PI and
uses it only once in multiplying the 10000 points of VAR.

7) After complex plots using viewports, use CANCEL VIEWPORTS to clear
graphics memory.

8) If one has SET MODE STUPID:weak_cache, then make sure that the region is
fully defined (i.e., check SHOW REGION and check the region qualifiers of your
command). When the region along some axis is not specified Ferret defaults to the full
span of the data along that axis and is unable to optimize memory usage.

Ch9 Sec4. HARD COPY AND METAFILE TRANSLATION

Ch9 Sec4.1. 1Hard copy: postscript output

To obtain hard copy of plots produced by Ferret, follow these steps:

1) Within Ferret, enter the command

yes? SET MODE METAFILE

This tells Ferret to generate a graphic metafile (ANSI/ISO GKSM format) for each plot
created thereafter. To stop making the metafiles type

yes? CANCEL MODE METAFILE

2) Produce each plot as you would normally. Each new plot on your screen generates
an additional file named "metafile.plt.~n~" where "n" will be incremented for each
metafile. Overlay commands do not produce additional metafiles. (The metafile name
may be set by the SET MODE METAFILE command.)

3) After exiting from Ferret use the command Fprint.

Note: If it is necessary to use Fprint without exiting Ferret, then issue the command
yes? PPL CLSPLT. This will close the current metafile. Note that neither overlays
nor additional viewports can be added to the plot after the metafile has been closed.

Fprint is a script which translates metafiles generated by Ferret. It uses the program
"gksm2ps" and is intended to simplify sending plots to printers, to an output file only, or
to a workstation screen.

On Windows systems, the Fprint command is not available. Run the gksm2ps
command directly to translate your metafile to postscript. See the next section, Metafile
Translation (p. 240), for a description of Fprint

The Fprint script translates metafiles to Encapsulated PostScript or X-window output.
Your system manager should customize the script at your site to permit your
specification of the actual printers you have as output devices. Fprint uses standard
Unix command line syntax.

Fprint [-h] [-P printer || -o file_name || -X]

 [-p orient] [-# n] [-l line] [-R] metafile(s)

Options

-h displays help on your terminal.

-P printer Routes output to named printer. Files will not be renamed by
previewing. You will be prompted, however, with an option to delete
each metafile after previewing. The output window size will be
equivalent to the default size in Ferret (SET WINDOW/SIZE=0.7).

-o file_name Routes output to named disk postscript file.

-X Routes output to your workstation screen. Files will not be renamed
by previewing. You will be prompted, however, with an option to
delete each metafile after previewing. The output window size will
be equivalent to the default size in Ferret (SET
WINDOW/SIZE=0.7).

-p orient The page orientation option determines whether the plot will be
placed on the page in landscape format, with the horizontal side
longer than the vertical, or portrait, with the vertical side longer.
Valid option values are "landscape" and "portrait". The default
behavior is to orient the plot to best fit the page.

-# n Specifies number of copies (n).

-l line This option lets you specify line styles. Valid options are "ps" and
"cps". "ps" uses dot-dashed line types; "cps" uses colored lines. The
default is "ps" for monochrome printers and "cps" for color printers.

-R Turns off the default behavior of the metafile translator to append a
date stamp to metafile names when they are sent to a printer or a disk
file. The default action is intended to distinguish metafiles that have
been printed out; this option keeps the metafile names unmodified.

-C Output a CMYK postscript file; default is RGB. See the FAQ on
CMYK color, How can I get CMYK format for postscript files?

Examples

% Fprint metafile.plt

renders "metafile.plt" on the default printer identified by the environment variable
PRINTER.

% Fprint -P myprinter -R metafile.plt*

renders all versions of "metafile.plt" on printer myprinter. Does not date stamp them.

% Fprint -o my_plot.ps metafile.plt.~1~

writes plot "metafile.plt.~1~" to a postscript file named "my_plot.ps".

Ch9 Sec4.2. Metafile translation

The command "gksm2ps" allows you to control the translation of the device-
independent metafiles made by Ferret into device-specific output files. "gksm2ps" was
written by Larry Oolman at the University of Wyoming and modified at NOAA/PMEL
for use with Ferret. The "gksm2ps" command uses standard Unix command line syntax.
See usage hints provided by the -h option.

gksm2ps [-h] [-p landscape||portrait] [-l ps||cps] [-d cps||phaser]
\

 [-X || -o <ps_output_file>] [-R] [-a] [-g WxH+X+Y] file(s)

http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/CMYK_postscript.html

Options

-h prints help message.

-p orient The page orientation option determines whether the plot will be
placed on the page in landscape format, with the horizontal side
longer than the vertical, or portrait, with the vertical side longer.
The default is to orient the plot to best fit the page.

-l line This option permits specification of line styles in the hardcopy plot.
Valid options are "ps" (the default) and "cps". "ps" renders lines as
solid and dot-dashed and is suited for monochrome printers. "cps"
renders lines in color.

-d devtype The target device type of the translator. If the -d option is omitted
and output is to a file gksm2ps will use devtype "ps".

 Valid devtype values:

 Cps – color PostScript

phaser – Tektronix Phaser PX. The phaser is a PostScript printer,
but it uses transfer sheets that reduce the usable page size.

-X Sends the output to your X-window for preview.

-o ofile The output will be directed to the file "ofile." Omit both this and
the device type option when directing output to your workstation
screen with -X. If neither -o nor -X is specified, gksm2ps creates a
postscript file in the current directory called "gksm2ps_output.ps".

-a Makes the plot the size of the original plot as specified in PPLUS
inches (absolute size), rather than fitting the plot to the page (the
default behavior).

-g WxH+X+Y The -g option (-g WxH+X+Y) provides detailed control over the
size, position, and aspect ratio of the plot on the printed page. The
arguments W, H, X, and Y are given in units of points (1/72 of an
inch).

 Normally when using this option you will want to specify an
identical value for both W and H—the size (in points) you want the
longer dimension of the plot to be. Unequal values of W and H will
alter the aspect ratio of the plot relative to its appearance on your
workstation screen.

 The X and Y values are the offset of the lower left corner of the
plot from the lower left corner of the page. If you want your plot's
longer side to be 5 inches long, 3 inches right from the corner, and
2 inches up, for example, specify

> lpr my_plot.ps

-R Turns off the default behavior of the metafile translator to append a
date stamp to metafile names when they are sent to a printer or a
disk file. The default action is intended to distinguish metafiles that
have been printed out; this option keeps the metafile names
unmodified.

If the user does not specify an output option (-o or -X) gksm2ps translates the metafile
and produces a PostScript file called gksm2ps_output.ps. After translation by gksm2ps,
metafiles are renamed with a date stamp unless -R was specified. To get hard copy
printed, the output PostScript file needs to be sent to the appropriate printer.

Ch9 Sec4.3. Hard Copy: gif files

To create gif graphics output, execute Ferret commands to produce a plot. Then use the
command FRAME/FILE=filename.gif to write a gif-formatted file. See the section on
the FRAME command (p. 331).

Or, start Ferret in gif mode,with the -gif command-line switch, to run Ferret without X
server software. Execute the FRAME command to save the plot as a gif image.

< ferret -gif

yes? (commands that generate a plot...)

yes? FRAME/FILE=picture.gif

See p. 6 for a complte description.

Ch9 Sec5. OUTPUT FILE NAMING

Ferret uses a file naming scheme to differentiate successive graphic metafiles and
 journal files. The scheme is styled after the gnu (Free Software Foundation) emacs
editor. The scheme appends numbers to the end of the file name as in the following
examples:

Metafile.plt.~2~
metafile.plt.~12~
metafile.plt

The third example, "metafile.plt" with no suffix appended, is the most recent file. When
the next successive file is created, this file will have the suffix ".~nnn~" appended to its
name. "nnn" is the current highest file suffix number plus one.

Two Unix tools are provided to assist with managing multiple file suffix numbers:

Fpurge removes all but the current version of the named file (that is, all but the
most recent).

Example: % Fpurge ferret.jnl

Fsort sorts the versions of a file into increasing numerical order

Example: % Fprint 'Fsort metafile.plt*'

See the introductory chapter, section "Unix tools," p. 29, for further information.

Ch9 Sec6. INPUT FILE NAMING

There are several Ferret commands that use filenames. These include:

GO filename
SET DATA filename
LIST/FILE=filename (do not use relative versions (below) with LIST)
USER/FILE=filename
SET MODE META filename
SET MODE JOURNAL filename
SET MODE PPLLIST filename

The filename specified can be just the filename itself, or it can include the path to the
file. For example:

 GO ferret.jnl or GO
"/home/disk1/jnl_files/far_side.jnl"

Note that if the path is specified as part of the filename, the entire name must be
enclosed in quotation marks.

Ch9 Sec6.1. Relative version numbers

Under some circumstances (see the GO command, p. 331) a special syntax called
"relative version numbers" will apply. If a filename has a version value of zero or less
its value is interpreted relative to the current highest version number.

For example, if the current directory contains the files

ferret.jnl ferret.jnl.~1~ ferret.jnl.~2~ ... ferret.jnl.~99~

then the filename ferret.jnl.~0~ refers to ferret.jnl and the filename
ferret.jnl.~-1~ refers to ferret.jnl.~99~.

The syntax for relative version numbers is quite flexible. For example, if the desired file
is ferret.jnl.~99~, both of the following are valid:

 yes? GO ferret.jnl.~-1~ or yes? GO ferret.jnl~-1

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 10: CONVERTING TO NetCDF

Ch10 Sec1. OVERVIEW

The Network Common Data Format (NetCDF) is an interface to a library of data access routines
for storing and retrieving scientific data. NetCDF allows the creation of data sets that are self-
describing and network-transparent. NetCDF was created under contract with the Division of
Atmospheric Sciences of the National Scientific Foundation and is available from the Unidata
Program Center in Boulder, Colorado (on Internet: unidata.ucar.edu).

This chapter provides directions for creating NetCDF data files. In addition to the documentation
provided here, refer to the NetCDF User's Guide, published by Unidata Program Center, for
further guidance. A user who uses and creates NetCDF files within the Ferret environment needs
no additional software.

NetCDF is a very flexible standard. In most cases there are multiple styles or profiles that could be
used to encode data into NetCDF. To resolve the ambiguities inherent in this multiplicity
communities of users have banded together to develop profiles—documents that provide more
detail on how data should be encoded into NetCDF. Ferret adheres to the COARDS standard. The
full standard is available through the Ferret home page on the World Wide Web,

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

Note that Ferret variables may have only four dimensions.

Ch10 Sec2. SIMPLE CONVERSIONS USING FERRET

In straightforward conversion operations where ASCII or unformatted binary data files are already
readable by Ferret, the conversion to direct access, self-describing NetCDF formatted data can be
accomplished by Ferret itself. The following set of examples illustrates these procedures:

Example 1

Consider an ASCII file uv.data, with two variables, u and v, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a NetCDF formatted
data set:

yes? DEFINE AXIS/x=1:360:1/units=degrees xaxis
yes? DEFINE AXIS/y=1:180:1/units=degrees yaxis
yes? DEFINE GRID/x=xaxis/y=yaxis uv_grid

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

yes? FILE/GRID=uv_grid/BAD=-999/VAR="u,v" uv.data
yes? SET VARIABLE/TITLE="zonal velocity" u
yes? SAVE/FILE=uv.cdf u,v

See command DEFINE AXIS in the Commands Reference (p. 312). See the chapter "Grids and
Regions" (p. 129) for setting up formatted latitude, longitude and time axes.

Example 2

Consider now two separate ASCII files, u.data and v.data, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a single NetCDF
formatted data set:

yes? DEF AXIS/x=1:360:1/units=degrees xaxis
yes? DEF AXIS/y=1:180:1/units=degrees yaxis
yes? DEF GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR=u u.data
yes? FILE/GRID=uv_grid/BAD=-999/VAR=v v.data
yes? SAVE/FILE=uv2.cdf u[D=1]
yes? SAVE/APPEND/FILE=uv2.cdf v[D=2]

Example 3—multiple time steps

Consider 12 ASCII files, uv.data1 to uv.data12, each defined on the same grid as above but each
representing a successive time step. The following set of commands illustrates how to save these
data into a single NetCDF data set (time series):

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/t=1:1:1 taxis1
yes? DEF GRID/x=xaxis/y=yaxis/t=taxis1 uv_grid1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? SAVE/FILE=uv1_12t.cdf u,v
yes? CANCEL DATA uv.data1
yes? DEF AXIS/t=2:2:1 taxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/APPEND/FILE=uv1_12t.cdf u,v
. . .

and so on, redefining the time axis to be 3:3:1, 4:4:1, ... each time a new file is set.

When the input data is in NetCDF files, please see the following FAQ on using data from a set of
input files. Note particularly the example showing how to add time information to the variable
when the grid of the input data has no time axis.

FAQ: How can I use data as a time series when it exists in multiple files?

http://www.ferret.noaa.gov/Ferret/FAQ/data_management/multi_dataset.html

Example 4—multiple slabs

The procedure used in example 3, above, is possible because NetCDF files can be extended along
the time axis. In order to append multiple levels (Z axis), the NetCDF file must first be created
including all of its vertical levels (the levels initially are filled with a missing data flag).

Consider 5 ASCII files, uv.data1 to uv.data5, each defined on the same grid as above but each
representing a successive vertical level. Note that the output grid has an axis containing all the Z
levels that the file will contain (and that the other Z axes, zaxis1, zaxis2, ... are defined only for
the purpose of reading the data in). The following set of commands illustrates how to save these
data into a single NetCDF data set:

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/Z=0:100:25/DEPTH zaxis
yes? DEF GRID/X=xaxis/Y=yaxis/Z=zaxis uv_grid
yes? DEF AXIS/Z=0:0:1 zaxis1
yes? DEF GRID/LIKE=uv_grid/Z=zaxis1 uv_grid1

yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? LET/TITLE="My U data" u1 = u[G=uv_grid]
yes? LET/TITLE="My V data" v1 = v[G=uv_grid]
yes? SAVE/FILE=uv1_5z.cdf/KLIMITS=1:5/K=1 u1, v1

yes? CANCEL DATA uv.data1
yes? DEF AXIS/Z=25:25:1 zaxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/FILE=uv1_5z.cdf/K=2/APPEND u1,v1
. . .

yes? CANCEL DATA/ALL ! Cancel definitions before using new file

yes? CANCEL VAR/ALL

yes? USE uv1_5z.cdf

The NetCDF utilities "ncdump" and "ncgen" can also be combined with a text editor to make final
refinements to the NetCDF files created by SAVE. (These utilities are not provided with the Ferret
distribution; they can be obtained from unidata.ucar.edu.) Here is a simple example that removes
all "history" attributes from a NetCDF file using pipes and the Unix "grep" utility:

% ncdump old_file.cdf | grep -v history | ncgen -o new_file.cdf

http://www.ferret.noaa.gov/Ferret/FAQ/data_management/multi_dataset.html

Ch10 Sec3. WRITING A CONVERSION PROGRAM

There are three steps required to convert data to NetCDF if your data is not already readable by
Ferret:

1. Create a CDL (the ASCII NetCDF Description Language) file that describes the axes, grids,
and variables of the desired output data set. Note: Ferret itself often provides the simplest way to
create the CDL file (see the following section).

2. Convert this CDL file into a NetCDF file with the ncgen utility.

3. Create a program that will read your particular data and insert them into the NetCDF file. The
ncgen utility will create most of the FORTRAN or C code needed for this task.

The file converting_to_netcdf.f which is located in the Ferret documentation directory
($FER_DIR/doc) contains a complete description and example of these three steps. The remainder
of this section provides further details.

Ch10 Sec3.1. Creating a CDL file with Ferret

Suppose that we wish to create a CDL file to describe a data set entitled "My Global Data" which
contains variables u and v in cm/sec on a 5×5 degree global lat/long grid. The following
commands would achieve the goal with Ferret doing the majority of the work:

• From Ferret issue the commands

DEFINE AXIS/X=2.5E:2.5W:5/UNITS=degrees xlong
DEFINE AXIS/Y=87.5S:87.5N:5/UNITS=degrees ylat
DEFINE GRID/X=xlong/Y=ylat my_grid
LET shape_2d = x[G=my_grid]+y[G=my_grid]
LET U = 1/0*SHAPE_2D
LET V = 1/0*SHAPE_2D
SET VARIABLE/TITLE="Zonal Velocity"/UNITS="cm/sec" u
SET VARIABLE/TITLE="Meridional Velocity"/UNITS="cm/sec" v
SAVE/FILE=my_file.cdf/TITLE="My Global Data" u,v
QUIT

• From Unix issue the command

ncdump -c my_file.cdf > my_file.cdl

The resulting file my_file.cdl is ready to use or to make final modifications to with an editor.

Ch10 Sec3.2. The CDL file

A CDL file consists of three sections: Dimensions, Variables, and Data. All of the following text
in small Courier font constitutes a real CDL file; it can be copied verbatim and used to
generate a NetCDF file. The full text of this file is included with the Ferret distribution as
$FER_DIR/doc/converting_to_netcdf.basic.

netcdf converting_to_netcdf.basic {

Ch10 Sec3.2.1. Dimensions

In this section, the sizes of the grid dimensions are specified. One of these dimensions can be of
"unlimited" size (i.e., it can grow).

Dimensions:

 lon = 160 ; // longitude
 lat = 100 ; // latitude
 depth = 27 ; // depth
 time = unlimited ;

These are essentially parameter statements that assign certain numbers that will be used in the
Variables section to define axes and variable dimensions. The "//" is the CDL comment syntax.

The dimension variables are available to you in Ferret commands as pseudo-variables. For
example, to use the "depth" dimension variable from the above example, you can say:

yes? let valz = z[gz=depth]
yes? let offset = valz + a

See the next section (p. 251) about axes for more on dimension variables.

Ch10 Sec3.2.2. Variables

Variables, variable attributes, axes, axis attributes, and global attributes are specified.

variables:

 float temp(time, depth, lat, lon) ;
 temp: long_name = "TEMPERATURE" ;
 temp: units = "deg. C" ;
 temp: _FillValue = 1E34 ;
 float salt(time, depth, lat, lon) ;
 salt: long_name = "(SALINITY(ppt) - 35) /1000" ;
 salt: units = "frac. by wt. less .035" ;
 salt: _FillValue = -999. ;

The declaration "float" indicates that the variable is to be stored as single precision, floating point
(32-bit IEEE representation). The declarations "long" (32-bit integer), "short" (16-bit integer),
"byte" (8-bit integer) and "double" (64-bit IEEE floating point) are also supported by Ferret. Note
that although these data types may result in smaller files, they will not affect Ferret's memory
usage, as all variables are converted to "float" internally as they are read by Ferret.

Variable names in NetCDF files should follow the same guidelines as Ferret variable names:

● case insensitive (avoid names that are identical apart from case)
● 1 to 24 characters (letters, digits, $ and _) beginning with a letter
● avoid reserved names (I, J, K, L, X, Y, Z, T, XBOX, ...)

See p. 60 for how to handle invalid variable names that are already in a NetCDF file.

The _FillValue attribute informs Ferret that any data value matching this value is a missing
(invalid) data point. For example, an ocean data set may label land locations with a value such as
1E34. By identifying 1E34 as a fill value, Ferret knows to ignore points matching this value. The
attribute "missing_value" is similar to "_FillValue" when reading data; but "_FillValue" also
specifies a value to be inserted into unspecified regions during file creation. You may specify two
distinct flags for invalid data in the same variable by using "_FillValue" and "missing_value"
together.

Scale and offset values may be specified by the scale_factor and add_offset attributes.

Ferret variables may have from 1 to 4 dimensions. If any of the axes have the special
interpretations of: 1) latitude, 2) longitude, 3) depth, or 4) time (date), then the relative order of
those axes in the CDL variable declaration must be T, then Z, then Y, and then X, as above. Any
of these special axes can be omitted and other axes (for example, an axis called "distance") may be
inserted between them.

axis definitions:

 double lon(lon) ;
 lon: units = "degrees";
 double lat(lat) ;
 lat: units = "degrees";
 double depth(depth) ;
 depth: units = "meters";
 double time(time) ;
 time: units = "seconds since 1972-01-01";

Axes, also known as coordinate variables, are distinguished from other 1-dimensional NetCDF
variables by their variable names being identical to their dimension names. Special axis
interpretations are inferred by Ferret through a variety of "clues."

The direction of the axis may be specified by the attribute AXIS or CARTESIAN_AXIS. Files
written by Ferret (as of version 5.5) include the AXIS attribute for coordinate variables.

lon: axis="X";

Date/time axes are inferred by units of "years," "days," "hours," "minutes," or "seconds," or by
axis names "time," "date," or "t" (case-insensitive). Calendar date formatting requires the "units"
attribute to be formatted with both a valid time unit and "since yyyy-mm-dd".

Vertical axes are identified by axis names containing the strings "depth", "elev", or "z", or by units
of "millibars." Depth axes are positive downward by default. The attribute positive= "down" can
also be used to create a downward-pointing Z axis. The positive= attribute may be used on any
axis, with the values positive= "down" or positive="up", however positive="down" is applied only
to Z axes and is ignored otherwise.

Latitude axes are inferred by units of "degrees" or "latitude" with axis names containing the strings
"lat" or "y". Longitude axes are inferred by units of "degrees" or "longitude" with axis names
containing the strings "lon" or "x".

Axis direction is determined by Ferret as in this order:

1) AXIS attribute

2) CARTESIAN_AXIS attribute

3) positive="down", indicating a z axis

4) Axis units

5) Axis name

Once the direction is determined, other conflicting information is ignored. Thus if an axis has the
attribute AXIS="Y"

Axes are either netCDF coordinate variables or are synthesized (as simple indices 1, 2, 3, ...) if
coordinate definitions are missing for a variable. The axes of a variable are available as "pseudo-
variables" using the syntax X[g=var], where "var" is the name of the netCDF variable, and
similarly for the Y,Z, and T axes. When the data set is cancelled the associated axes are cancelled,
too. The exception is that axes will be retained if they are in use in a DEFINE GRID definition --
and they will be erased from memory at the time all grids using them are cancelled.

Some files contain axis definitions (coordinate variables) without associated variables. Like all
axes they are visible with the SHOW AXIS command. To obtain the values of those coordinate
variables as Ferret pseudo-variables use the syntax X[gx=axname], where axname is the name of
the coordinate variable (also the NetCDF dimension name) and likewise for Y,Z, and T axes.
 Note that when the data set is cancelled, axis definitions of this variety are retained -- unlike axes
that are used in variables.

Global attributes, or attributes that apply to the entire data set, can be specified as well.

global attributes:
 :title = "NetCDF Example";
 :message = "This message will be displayed when the CDF file is
 opened by Ferret";
 :history = "Documentation on the origins and evolution of this data
 set or variable";

Ch10 Sec3.2.3. Data

In this section, values are assigned to grid coordinates and to the variables of the file. Below are
100 latitude coordinates entered (in degrees) into the variable axis "lat", 160 longitude coordinates
in "lon", and 27 depth coordinates (in meters) in "depth". Longitude coordinates must be specified
with 0 at Greenwich, continuous across the dateline, with positive eastward (modulo 360).

Data:

lat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.151357650,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.987424850,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.169393539,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,

-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
lon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,

141.5,142.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,

152.5,153.5,154.5,155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,

163.5,164.5,165.5,166.5,167.5,168.5,169.5,170.5,171.5,172.5,173.5,

174.5,175.5,176.5,177.5,178.5,179.5,180.5,181.5,182.5,183.5,184.5,

185.5,186.5,187.5,188.5,189.5,190.5,191.5,192.5,193.5,194.5,195.5,

196.5,197.5,198.5,199.5,200.5,201.5,202.5,203.5,204.5,205.5,206.5,

207.5,208.5,209.5,210.5,211.5,212.5,213.5,214.5,215.5,216.5,217.5,

218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,226.5,227.5,228.5,

229.5,230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,238.5,239.5,

240.5,241.5,242.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,250.5,

251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,260.5,261.5,

262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,

273.5,274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,

284.5,285.5,286.5,287.5,288.5,289.5;
depth=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,

155.0,177.5,205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,

2524.0,3174.0,3824.0; }

To use this CDL file type:

% ncgen -o my_data.cdf converting_to_netcdf.basic

This will create a file called "my_data.cdf" to which data can be directed (see next section).

Another NetCDF command, "ncdump", can be used to generate a CDL file from an existing
NetCDF file. The command

% ncdump -h my_data.cdf

will list the CDL representation of a preexisting my_data.cdf without the Data section, while

% ncdump my_data.cdf

will list the CDL file with the Data section. The command

% ncdump -c my_data.cdf

will create a CDL file in which only coordinate variables are included in the Data section. The
listed output can be redirected to a file as in the command

% ncdump -c my_data.cdf > my_data.cdl

Ch10 Sec3.3. Standardized NetCDF attributes

A document detailing the COARDS NetCDF conventions to which the Ferret program adheres are
available on line through the Ferret home page on the World Wide Web, at
 http://www.ferret.noaa.gov/noaa_coop/ coop_cdf_profile.html and at

 http://www.unidata.ucar.edu/packages/netcdf/conventions.html

The following are the attributes most commonly used with Ferret. They are described in greater
detail in the reference document named above.

Global Attributes
:title = "my data set title"

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.unidata.ucar.edu/packages/netcdf/conventions.html

:history = "general background information"

Data Variable Attributes
long_name = "title of my variable"
units = "units for this variable"
_FillValue = missing value flag
missing_value = alternative missing value flag
scale_factor = (optional) the data are to be multiplied by this factor
add_offset = (optional) this number is to be added to the data

Special Coordinate Variable Attributes
time_axis:units = "seconds since 1992-10-8 15:15:42.5 -6:00"; // example
y_axis:units = "degrees_north"
x_axis:units = "degrees_east"
z_axis:positive = "down"; // to indicate preferred plotting orientation
my_axis:point_spacing = "even"; // improved performance if present

See the SAVE command to write to a NetCDF file. (p.363). Note that when using Ferret to
output into NetCDF files that Ferret did not itself create, the results may not be entirely as
expected. Case-sensitivity of names is one aspect of this. Since Ferret is (by default) case
insensitive and netCDF files are case-sensitive writing into a "foreign" file may result in
 duplicated entities in the file which differ only in case.

Ch10 Sec3.4. Directing data to a CDF file

The following is an example program which can be used on-line to convert existing data sets into
NetCDF files. It also should provide guidance on sending data generated by numerical models
directly to NetCDF files. This program assumes you have created the NetCDF file as described in
the previous section. It is included in the distribution as $FER_DIR/doc/converting_to_netcdf.f.

 program converting_to_netcdf

c written by Dan Trueman
c updated 4/94 *sh*

c This program provides a model for converting a data set to NetCDF.
c The basic strategy used in this program is to open an existing NetCDF
c file, query the file for the ID's of the variables it contains, and
c then write the data to those variables.

c The output NetCDF file must be created **before** this program is run.
c The simplest way to do this is to cd to your scratch directory and
c % cp $FER_DIR/doc/converting_to_netcdf.basic converting_to_netcdf.cdl

c and then edit converting_to_netcdf.cdl (an ASCII file) to describe YOUR
c data set. If your data set requires unequally spaced axes, climatological c
time axes, staggered grids, etc. then converting_to_netcdf.supplement may c
be a better starting point then the "basic" file used above.
c After you edit converting_to_netcdf.cdl then create the NetCDF file with
c the command
c % ncgen -o converting_to_netcdf.cdf converting_to_netcdf.cdl

c Now we will read in **your** data (gridded oceanic temperature and
c salt in this example) and write it out into the NetCDF file
c converting_to_netcdf.cdf. Note that the axis coordinates can be written
c out exactly the same methodology - including time step values (as below).

c An alternative to modifying this program is to use the command:

c ncgen -f converting_to_netcdf.cdl

c This will create a large source code to which select lines can
c be added to write out your data.

c To compile and link converting_to_netcdf.f, use:

c f77 -o converting_to_netcdf converting_to_netcdf.f -lnetcdf

c include file necessary for NetCDF

 include 'netcdf.inc' ! may be found in $FER_DIR/fmt/cmn

c parameters relevant to the data being read in
c THESE NORMALLY MATCH THE DIMENSIONS IN THE CDL FILE
c (except nt which may be "unlimited")

 integer imt, jmt, km, nt, lnew, inlun
 parameter (imt=160, jmt=100, km=27, nt=5)

c imt is longitude, jmt latitude, km depth, and nt number of time steps

c variable declaration

 real temp(imt,jmt,km),salt(imt,jmt,km),time_step

 integer cdfid, rcode
c ** cdfid = id number for the NetCDF file my_data.cdf
c ** rcode = error id number

 integer tid, sid, timeaxid
c ** tid = variable id number for temperature
c ** sid = variable id number for salt
c ** timeaxid = variable id for the time axis
 integer itime
c ** itime = index for do loop

c dimension corner and step for defining size of gridded data

 integer corner(4)
 integer step(4)

c corner and step are used to define the size of the gridded data
c to be written out. Since temp and salt are four dimensional arrays,
c corner and step must be four dimensions as well. In each output
c to my_data.cdf within the do loop, the entire array of data (160 long.
c pts, 100 lat. pts., 27 depth pts.) will be written for one time step.
c Corner tells NetCDF where to start, and step indicates how many steps
c in each dimension to take.

 data corner/1, 1, 1, -1/ ! -1 is arbitrary; the time value
 !
of corner will be initialized
 ! within the do loop.

 data step/imt, jmt, km, 1/ ! NOT /1, km, jmt, imt/

c ***NOTE*** Since Fortran and C access data differently, the order of
c the variables in the Fortran code must be opposite that in the CDL
c file. In Fortran, the first index varies fastest while in C, the
c last index varies fastest.
**
c initialize cdfid by using ncopn

 cdfid = ncopn('converting_to_netcdf.cdf', ncwrite, rcode)
 if (rcode.ne.ncnoerr) stop 'error with ncopn'

**
c get variable id's by using ncvid
c THE VARIABLE NAMES MUST MATCH THE CDL FILE (case sensitive)

 tid = ncvid(cdfid, 'temp', rcode)
 if (rcode.ne.ncnoerr) stop 'error with tid'
 sid = ncvid(cdfid, 'salt', rcode)
 if (rcode.ne.ncnoerr) stop 'error with sid'
 timeaxid = ncvid(cdfid, 'time', rcode)
 if (rcode.ne.ncnoerr) stop 'error with timeaxid'
**
c this is a good place to open your input data file
 ! OPEN (FILE=my_data.dat,STATUS='OLD')
**
c begin do loop. Each step will read in one time step of data
c and then write it out to my_data.cdf.

 do 10 itime = 1, nt

 corner(4) = itime ! initialize time step in corner
 time_step = float(itime) ! or you may read this from your file

* insert your data reading routine here
! CALL READ_MY_DATA(temp,salt) ! you write this

 write (6,*) 'writing time step: ',itime, time_step ! diagnostic output

 call ncvpt(cdfid,tid,corner,step,temp(1,1,1),rcode) ! write data to
 if (rcode.ne.ncnoerr) stop 'error with t-put'
 call ncvpt(cdfid,sid,corner,step,salt(1,1,1),rcode) ! my_data.cdf with
 if (rcode.ne.ncnoerr) stop 'error with s-put'
 call ncvpt1(cdfid,timeaxid,itime,time_step,rcode) ! ncvpt
 if (rcode.ne.ncnoerr) stop 'error with timax-put'

c ncvpt1 writes a single data point to the specified location within
c timeaxid. The itime argument in ncvpt1 specifies the location within
c time to write.
c float(itime) is used (rather than simply itime) so the type matches the
c type of time declared in the CDL file.

10 continue
**
c close my_data.cdf using ncclos
 call ncclos(cdfid, rcode)
 if (rcode.ne.ncnoerr) stop 'error with ncclos'
**
 stop
 end

Ch10 Sec3.5. Advanced NetCDF procedures

This section describes:

1. Setting up a CDL file capable of handling data on staggered grids.

2. Defining coordinate systems such that the data in the NetCDF file may be regarded as
hyperslabs of larger coordinate spaces.

3. Defining boundaries between unevenly spaced axis coordinates (used in numerical
 integrations).

4. Setting up "modulo" axes such as climatological time and longitude.

5. Converting dates into numerical data appropriate for a NetCDF time axis.

The final section of this chapter contains the text of the CDL file for the example we use

throughout this section.

In this sample data set, we will consider wind, salt, and velocity calculated using a staggered-grid,
finite-difference technique. The wind data is limited to the surface layer of the ocean (i.e., normal
to the depth axis). We will also consider the salt data to be limited to a narrow slab from 139E to
90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for all depth and time values.

Ch10 Sec3.5.1. Staggered grid

Ferret permits each variable of a NetCDF file to be defined on distinct axes and grids. Staggered
grids are a straightforward application of this principle. Dimensions for each grid axis must be
defined, the axes themselves must be defined (in Variables), and the coordinate values for each
axis must be initialized (in Data). In the case of the example we use throughout this and the next
section, there are two grids—a wind grid, and a velocity grid; slon, slat and sdepth are defined for
the wind grid, and ulon, ulat, and wdepth for the velocity grid. The variables are then given
dimensions to place them in their proper grids (i.e., wind(time, sdepth, slat, slon)).

Ch10 Sec3.5.2. Hyperslabs

There are a number of steps required to set up a NetCDF data set that represents a hyperslab of
data from a larger grid definition (a parent grid).

1. Define a dimension named "grid_definition." This dimension should be set equal to 1.

2. Define parent grids in Variables with the argument "grid_definition".

char wind_grid(grid_definition) ;
char salt_grid(grid_definition) ;

3. Define the 4 axes of the parent grids using the "axes" attribute.

wind_grid: axes = "slon slat normal time" ;
salt_grid: axes = "slon slat sdepth time" ;

The arguments are always a list of four axis names. Note that the order of arguments is opposite
that in the variable declaration. The argument "normal" indicates that wind_grid is normal to the
depth axis.

4. Define the variables that are hyperslabs of these grids with the proper dimensions.

float wind(time, slat, slon) ;
float salt(time, sdepth, slat80_82, slon10_140) ;

where the dimension slat80_82 = 3 and slon10_140 = 131. Optionally, these axes may be defined
themselves with the attribute "child_axis".

float slat80_82(slat80_82) ;
slat80_82: child_axis = " " ;

These "child axes" need not be initialized in data, nor do edges need to be defined for them; Ferret
will retrieve this information from the parent axis definitions. However, it is recommended that
they be initialized to accommodate other software that may not recognize parent grids.

 5. Use the "parent_grid" variable attribute to point to the parent grid.

wind: parent_grid = "wind_grid"
salt: parent_grid = "salt_grid"

6. Also, as a variable attribute, define the index range of interest within the parent grid.

wind: slab_min_index = 1s, 1s, 1s, 0s ;
wind: slab_max_index = 160s, 100s, 1s, 0s ;
salt: slab_min_index = 10s, 80s, 1s, 0s ;
salt: slab_max_index = 140s, 82s, 27s, 0s ;

The "s" after each integer indicates a "short" 16-bit integer rather than the default "long" 32-bit
integer. If an axis dimension is designated as "unlimited" then the index bounds for this axis must
be designated as "0s".

These attributes will effectively locate the wind and salt data within the parent grid.

Ch10 Sec3.5.3. Unevenly spaced coordinates

For coordinate axes with uneven spacing, the boundaries between each coordinate can be
indicated by pointing to an additional axis that contains the locations of the boundaries. This can
be done in one of two ways: The axis edges may be listed, N+1 edges for an axis of N coordinaes.
 Or cell bounds may be listed, with the lower and upper bound of each cell for a list of N*2
bounds. (The bounds attribute was implemented in Ferret version 5.70.)

 If edges or bounds are not explicitly defined for an unevenly spaced axis, the midpoint between
coordinates is assumed by default.

To define edges:

1. Define a dimension one larger than the coordinate axis. For the sdepth axis, with 27
coordinates, define:

 sdepth_edges = 28 ;

2. Define an axis called sdepth_edges.

3. Initialize this axis with the desired boundaries (in Data).

4. As an attribute of the main axis, point to edges list:

 sdepth: edges = "sdepth_edges" ;

To define bounds

1. Define a dimension twice as large as the coordinate axis. For the sdepth axis, with 27
coordinates, define:

 sdepth_bnds = 54;

2. Define an axis called sdepth_bnds.

3. Initialize this axis with the desired boundaries (in Data). The ordering is box_lo_1, box_hi_1,
box_lo_2, box_hi_2, ...

4. For a valid Ferret axis, the low bound of each cell must equal the high bound of the previous
cell.

5. As an attribute of the main axis, point to boundslist:

 sdepth: bounds = "sdepth_bnds" ;

Ch10 Sec3.5.4. Evenly spaced coordinates (long axes)

If the coordinate axes are evenly spaced, the attribute "point spacing" should be used:

slat: point_spacing = "even" ;

When used, this attribute will improve memory use efficiency in Ferret. This is especially
important for very large axes—10,000 points or more.

Ch10 Sec3.5.5. "Modulo" axes

The "modulo" axis attribute indicates that the axis wraps around, the first point immediately
following the last. The most common uses of modulo axes are:

1. longitude axes for globe-encircling data. If the modulo length is different from 360 degrees,
specify the value.

2. time axes for climatological data

time: modulo = " " ;

xavr: modulo = "100" ;

If the climatological data occurs in the years 0000 or 0001 then the year will be omitted from
Ferret's output format.

NetCDF time axes encoded as year 0000 or 0001 are automatically flagged as modulo axes.

As of Ferret version5.5, longitude axes and climatological time axes are always detected as
modulo, or as sub-span modulo when appropriate, unless Ferret is specifically directed that the
axis is NOT modulo. See the sections on modulo axes and subspan modulo axesfor more
information (p. 151 ff)

Ch10 Sec3.5.6. Reversed-coordinate axes

NetCDF axes may contain monotonically decreasing axis coordinates instead of monotonically
increasing coordinates. Ferret will hide this aspect of the file data ordering.

Ch10 Sec3.5.7. Converting time word data to numerical data

To set up a time axis for data represented as dates (e.g., "1972 January 15 at 12:15") it is necessary
to determine a numerical representation for each of the dates. Ferret can assist with this process, as
the following example shows.

Suppose the data are 6-hourly observations from 1-JAN-1991 at 12:00 to 15-MAR-1991 at 18:00.
These commands will assist in creating the necessary time axis for a NetCDF file:

yes? DEFINE AXIS/T="1-JAN-1991:12:00":"15-MAR-1991:18:00":6/UNITS=hours\
 my_time
yes? DEFINE GRID/T=my_time tgrid
yes? SET REGION/T="1-JAN-1991:12:00":"15-MAR-1991:18:00"
yes? LIST T[g=tgrid] !to see the time values
yes? SAVE/FILE=my_time.cdf T[g=tgrid]

The file my_time.cdf now contains a model of exactly the desired time axis. Use the Unix
command

% ncdump my_time.cdf > my_time.cdl

to obtain the time axis definition as text that can be inserted into your CDL file.

Ch10 Sec3.6. Example CDL file

The following is an example CDL file utilizing many of the features described in the preceding
section.

netcdf converting_to_netcdf_supplement {
// CONVERTING DATA TO THE "NETWORK COMMON DATA FORM" (NetCDF):
// A SUPPLEMENT
//

// NOAA PMEL Thermal Modeling and Analysis Project (TMAP)
// Dan Trueman, Steve Hankin
// last revised: 1 Dec 1993: slat80_82 and slon10_140 coordinates included
//
// I. INTRODUCTION
//
// This supplement to "Converting Data to the Network Common Data Form:
// an Introduction" describes:
//
// 1. How to set up a cdl file capable of handling data
// on staggered grids.
// 2. How to define coordinate systems such that the data
// in the NetCDF file may be regarded as hyperslabs of
// larger coordinate spaces.
// 3. How to define variables of 1, 2, or 3 dimensions.
// 4. How to define boundaries between unevenly spaced axis
// coordinates (used in numerical integrations).
// 5. How to set up climatological "modulo" time axes.
// 6. How to convert time word data into numerical data
// appropriate for NetCDF.
//
// In this sample data set, we will consider wind, salt, and
// velocity calculated using a staggered-grid, finite-difference
// technique. The wind data is naturally limited to the surface
// layer of the ocean (i.e. normal to the depth axis). We will
// also consider the salt data to be limited to a narrow slab from
// 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for
// all depth and time values.
//
// II. STAGGERED GRIDS
//
// Dealing with staggered grids is fairly straightforward. Dimensions
// for each grid axis must be defined, the axes themselves must be
// defined (in Variables), and the coordinate values for each axis must
// be initialized (in Data). In this case, there are two grids, a
// wind grid, and a velocity grid, so tlon, tlat and tdepth are
// defined for the wind grid, and ulon, ulat, and udepth for the velocity
// grid. The variables are then given arguments to place them in their
// proper grids (i.e. wind(time, sdepth, slat, slon)).
//
// III. HYPERSLABS
//
// There are a number of steps required to set up a NetCDF data set that
// represents a hyperslab of data from a larger grid definition.
//
// 1. Define a dimension named "grid_definition". This dimension
// should be set equal to 1.
// 2. Define parent grids in Variables with the argument
// "grid_definition".
//
// char wind_grid(grid_definition) ;
// char salt_grid(grid_definition) ;

//
// 3. Define the 4 axes of the parent grids using the "axes" attribute.
//
// wind_grid: axes = "slon slat normal time" ;
// salt_grid: axes = "slon slat sdepth time" ;
//
// Note that the order of arguments is opposite that in the
// variable declaration. The argument "normal" indicates that
// wind_grid is normal to the depth axis.
//
// 4. Define the variables which are hyperslabs of these grids with
// the proper dimensions.
//
// float wind(time, slat, slon) ;
// float salt(time, sdepth, slat80_82, slon10_140) ;
//
// where slat80_82 = 3 and slon10_140 = 131. The axis names are
/// arbitrary - chosen for readability. These axes (child axes)
// must be defined with the attribute "child_axis" as follows:
//
// float slat80_82(slat80_82) ;
// slat80_82: child_axis = " " ;
//
// These "child axes" need not be initialized in Data, nor do their

// edges need be defined; Ferret retrieves this information from
// the parent axes.
//
// 5. Use the "parent_grid" variable attribute to point to the
// parent grid.
//
// wind: parent_grid = "wind_grid"
//
// 6. Also as a variable attribute, define the index range of interest
// within the parent grid.
//
// wind: slab_min_index = 1s, 1s, 1s, 0s ;
// wind: slab_max_index = 160s, 100s, 1s, 0s ;
// salt: slab_min_index = 10s, 80s, 1s, 0s ;
// salt: slab_max_index = 140s, 82s, 27s, 0s ;
//
// The "s" after each integer indicates a "short" 16-bit integer
// rather than the default "long" 32-bit integer. If an axis
// dimension is designated as "unlimited" then the index bounds
// for this axis must be designated as "0s".
//
// These commands will effectively locate the wind and salt data within
// the full grid.
//
// IV. VARIABLES OF 1, 2, or 3 DIMENSIONS
//
// One, two, or three dimensional variables may be set up in one of

// two ways - either using the parent_grid and child_axis attributes
// as illustrated in the 3-dimensional variable "wind" from the hyperslab
// example, above, or by selecting axis names and units that provide
// Ferret with adequate hints to map this variable onto 4-dimensional
// space and time. The following hints are recognized by Ferret:
//
// Units of days, hours, minutes, etc. or an axis name of "TIME", "DATE"
// implies a time axis.
// Units of "degrees xxxx" where "xxxx" contains "lat" or "lon" implies
// a latitude or longitude axis, respectively.
// Units of "degrees" together with an axis name containing "LAT" or
// "Y" implies a latitude axis else longitude is assumed.
// Units of millibars, "layer" or "level" or an axis name containing
// "Z" or "ELEV" implies a vertical axis.
//
// V. UNEVENLY SPACED COORDINATE BOUNDARIES
//
// For coordinate axes with uneven spacing, the boundaries between each
// coordinate can be indicated by pointing to an additional axis that
// contains the locations of the boundaries. The dimension of this "edge"
// axis will necessarily be one larger than the coordinate axis concerned.
// If edges are not defined for an unevenly spaced axis, the midpoint
// between coordinates will be assumed by default.
//
// 1. Define a dimension one larger than the coordinate axis. For
// the sdepth axis, with 27 coordinates, define:
//
// sdepth_edges = 28 ;
//
// 2. Define an axis called sdepth_edges.
// 3. Initialize this axis appropriately (in Data).
// 4. As a sdepth axis attribute, point to sdepth_edges:
//
// sdepth: edges = "sdepth_edges" ;
//
// If the coordinate axes are evenly spaced, the attribute "point spacing"
// should be used:
//
// slat: point_spacing = "even" ;
//
// When used, this attribute will improve memory use efficiency in Ferret.
//
// VI. CLIMATOLOGICAL "MODULO" AXES
//
// The "modulo" axis attribute indicates that the axis wraps around,
// the first point immediately following the last. The most common
// uses of modulo axes are:
//
// 1. As longitude axes for globe-encircling data.
// 2. As time axes for climatological data.
//
// time: modulo = " " ; // any arbitrary string is allowed

//
// If the climatological data occurs in the years 0000 or 0001 then Ferret
// will omit the year from the output formatting.
//
// VII. CONVERTING TIME WORD DATA TO NUMERICAL DATA
//
// If the time data being converted to NetCDF format exists in string format
// (i.e. 1972 - JANUARY 15 2:15:00), rather than numerical format (i.e. 55123
// seconds) a number of TMAP routines are available to aid in the conversion
// process. The steps required for conversion are as follows:
//
// 1. Break the time string into its 6 pieces. If the data is of the
// form dd-mmm-yyyy:hh:mm:dd, the TMAP routine "tm_break_date.f" can
// be used.
// 2. Choose a time_origin before the beginning of the time data to
// assure that all time values are positive. i.e. if the data begins
// at 15-JAN-1982:05:30:00, choose a time origin of
// 15-JAN-1981:00:00:00. This time_origin should then be an attribute
// of the time axis variable in the CDL file.
// 3. Produce numerical time data by using "tm_sec_from_bc.f", which
// calculates the number of seconds between 01-01-0000:00:00:00 and
// the date specified. Continuing the example from (2), the time
value
// for the first time step with respect to the time_origin could be
// calculated as follows:
//
// time(1) = tm_sec_from_bc(1982, 1, 15, 5, 30, 0) -
// tm_sec_from_bc(1981, 1, 15, 0, 0, 0)
//
// or more generally
//
// time(n)=tm_sec_from_bc(nyear,nmonth,nday,nhour,nminute,nsecond) -
// tm-sec_from_bc(oyear,omonth,oday,ohour,ominute,osecond)
//
// where nyear is the year for the nth time step and oyear is the
year
// of time_origin.
//
// VII. EXAMPLE CDL FILE dimensions:

// staggered grid dimension definitions:

 slon = 160 ; // wind/salt longitude dimension
 ulon = 160 ; // velocity longitude dimension
 slat = 100 ; // wind/salt latitude dimension
 ulat = 100 ; // velocity latitude dimension
 sdepth = 27 ; // salt depth dimension
 wdepth = 27 ; // velocity depth dimension

 slon10_140 = 131 ; // for salt hyperslab
 slat80_82 = 3 ; // for salt hyperslab
 time = unlimited ;

// grid_definition is the dimension name to be used for all grid definitions

 grid_definition = 1 ;

// edge dimension definitions:

 sdepth_edges = 28 ;
 wdepth_edges = 28 ;

variables:

 // variable definitions:

 float wind(time, slat, slon) ; // 3-dimensional variable
 wind: parent_grid = "wind_grid" ;
 wind: slab_min_index = 1s, 1s, 1s, 0s ;
 wind: slab_max_index = 160s, 100s, 1s, 0s ;
 wind: long_name = "WIND" ;
 wind: units = "deg. C" ;
 wind: _FillValue = 1E34f ;
 float salt(time, sdepth, slat80_82, slon10_140) ; // 4-dim.
Variable
 salt: parent_grid = "salt_grid" ;
 salt: slab_min_index = 10s, 80s, 1s, 0s ;
 salt: slab_max_index = 140s, 82s, 27s, 0s ;
 salt: long_name = "(SALINITY(ppt) - 35) /1000" ;
 salt: units = "frac. by wt. less .035" ;
 salt: _FillValue = -999.f ;

 float u(time, sdepth, ulat, ulon) ;
 u: long_name = "ZONAL VELOCITY" ;
 u: units = "cm/sec" ;
 u: _FillValue = 1E34f ;
 float v(time, sdepth, ulat, ulon) ;
 v: long_name = "MERIDIONAL VELOCITY" ;
 v: units = "cm/sec" ;
 v: _FillValue = 1E34f ;
 float w(time, wdepth, slat, slon) ;
 w: long_name = "VERTICAL VELOCITY" ;
 w: units = "cm/sec" ;
 w: _FillValue = 1E34f ;

 // axis definitions:

 float slon(slon) ;
 slon: units = "degrees" ;
 slon: point_spacing = "even" ;
 float ulon(ulon) ;
 ulon: units = "degrees" ;
 ulon: point_spacing = "even" ;
 float slat(slat) ;
 slat: units = "degrees" ;
 slat: point_spacing = "even" ;

 float ulat(ulat) ;
 ulat: units = "degrees" ;
 ulat: point_spacing = "even" ;
 float sdepth(sdepth) ;
 sdepth: units = "meters" ;
 sdepth: positive = "down" ;
 sdepth: edges = "sdepth_edges" ;
 float wdepth(wdepth) ;
 wdepth: units = "meters" ;
 wdepth: positive = "down" ;
 wdepth: edges = "wdepth_edges" ;
 float time(time) ;
 time: modulo = " " ;
 time: time_origin = "15-JAN-1981:00:00:00" ;
 time: units = "seconds" ;

 // child grid definitions:

 float slon10_140(slon10_140) ;
 slon10_140: child_axis = " " ;

 slon10_140: units = "degrees" ;
 float slat80_82(slat80_82) ;
 slat80_82: child_axis = " " ;
 slat80_82: units = "degrees" ;

 // edge axis definitions:

 float sdepth_edges(sdepth_edges) ;
 float wdepth_edges(wdepth_edges) ;

 // parent grid definition:

 char wind_grid(grid_definition) ;
 wind_grid: axes = "slon slat normal time" ;
 char salt_grid(grid_definition) ;
 salt_grid: axes = "slon slat sdepth time" ;

 // global attributes:
 :title = "NetCDF Title" ;

data:

// // ignore this block //
//This next data entry, for time, should be ignored. Time is initialized here
// only so that Ferret can read test.cdf (the file created by this cdl file)
// with no additional data inserted into it.
Time=1000;
// // end of ignored block //

slat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.1513576508,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.9874248505,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.1693935394,

-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
ulat=
-27.6721439362,-25.3877544403,-23.1883945465,-21.1119174957,-19.1907978058,
-17.4507274628,-15.9094810486,-14.5761461258,-13.4507236481,-12.5241250992,
-11.7785758972,-11.1883859634,-10.7210769653,-10.3387994766,-9.9999876022,
-9.6666545868,-9.3333206177,-8.9999866486,-8.6666526794,-8.3333196640,
-7.9999856949,-7.6666517258,-7.3333182335,-6.9999847412,-6.6666512489,
-6.3333182335,-5.9999847412,-5.6666517258,-5.3333182335,-4.9999847412,
-4.6666517258,-4.3333182335,-3.9999849796,-3.6666517258,-3.3333184719,
-2.9999852180,-2.6666519642,-2.3333184719,-1.9999853373,-1.6666518450,
-1.3333184719,-0.9999850392,-0.6666516662,-0.3333182633,0.0000151545,
0.3333485723,0.6666819453,1.0000153780,1.3333487511,1.6666821241,
2.0000154972,2.3333489895,2.6666827202,3.0000162125,3.3333497047,
3.6666829586,4.0000162125,4.3333497047,4.6666827202,5.0000162125,
5.3333492279,5.6666827202,6.0000162125,6.3333492279,6.6666827202,
7.0000157356,7.3333497047,7.6666831970,8.0000171661,8.3333511353,
8.6666841507,9.0000181198,9.3333520889,9.6666860580,10.0000190735,
10.3358526230,10.6916217804,11.0869522095,11.5408391953,12.0713586807,
12.6953773499,13.4282865524,14.2837600708,15.2735414505,16.4072513580,
17.6922454834,19.1334934235,20.7334957123,22.4922523499,24.4072608948,
26.4735546112,28.6837768555,31.0283031464,33.4953994751,36.0713844299,
38.7408676147,41.4869842529,44.2916526794,47.1358833313,50.0000534058;
slon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,
142.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,
154.5,155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,
166.5,167.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,
178.5,179.5,180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,
190.5,191.5,192.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,
202.5,203.5,204.5,205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,
214.5,215.5,216.5,217.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,
226.5,227.5,228.5,229.5,230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,
238.5,239.5,240.5,241.5,242.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,
250.5,251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,260.5,261.5,
262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,273.5,
274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.5,

286.5,287.5,288.5,289.5;
ulon=
131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,
143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,
155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,
167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,
179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,
191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,
203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,
215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,
227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,
239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,
251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,
263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,
275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,
287.0,288.0,289.0,290.0;
sdepth=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174.0,
3824.0;
sdepth_edges=
0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,
145.0,165.0,190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,
2849.0,3499.0,4149.0;
wdepth=
10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,145.0,165.0,
190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,2849.0,3499.0,
4149.0;
wdepth_edges=
5.0,15.0,25.0,35.0,45.0,55.0,65.0,75.0,85.0,94.375,105.625,119.375,135.625,
153.75,176.25,202.5,235.75,280.0,347.5,460.75,651.25,950.0,1372.75,1895.0,
2524.0,3174.0,3986.5,4311.0;
slon10_140=
 139.5, 140.5, 141.5, 142.5, 143.5, 144.5, 145.5, 146.5, 147.5,
 148.5, 149.5, 150.5, 151.5, 152.5, 153.5, 154.5, 155.5, 156.5, 157.5,
 158.5, 159.5, 160.5, 161.5, 162.5, 163.5, 164.5, 165.5, 166.5, 167.5,
 168.5, 169.5, 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5,
 178.5, 179.5, 180.5, 181.5, 182.5, 183.5, 184.5, 185.5, 186.5, 187.5,
 188.5, 189.5, 190.5, 191.5, 192.5, 193.5, 194.5, 195.5, 196.5, 197.5,
 198.5, 199.5, 200.5, 201.5, 202.5, 203.5, 204.5, 205.5, 206.5, 207.5,
 208.5, 209.5, 210.5, 211.5, 212.5, 213.5, 214.5, 215.5, 216.5, 217.5,
 218.5, 219.5, 220.5, 221.5, 222.5, 223.5, 224.5, 225.5, 226.5, 227.5,
 228.5, 229.5, 230.5, 231.5, 232.5, 233.5, 234.5, 235.5, 236.5, 237.5,
 238.5, 239.5, 240.5, 241.5, 242.5, 243.5, 244.5, 245.5, 246.5, 247.5,
 248.5, 249.5, 250.5, 251.5, 252.5, 253.5, 254.5, 255.5, 256.5, 257.5,
 258.5, 259.5, 260.5, 261.5, 262.5, 263.5, 264.5, 265.5, 266.5, 267.5,
 268.5, 269.5 ;
slat80_82=
 11.8060989379883, 12.3833675384522, 13.0618314743042 ;

}

Ch10 Sec4. CREATING A MULTI-FILE NETCDF DATA SET

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set. Such
data sets are referred to as "MC" (multi CDF) data sets. They are defined via a descriptor file, in
the style of TMAP-formatted data sets. These are FORTRAN NAMELIST-formatted files. Slight
variations in syntax exist between systems. The requirements for an MC data set are described in
the chapter "Data Set Basics", section "Multi-file NetCDF data sets".

Previous to version 5.2 Ferret performs sanity checking on the data set by comparing these time
coordinates with those found in the data files as he data are read. In version 5.3 and higher no
sanity checks are performed. This means that the MC descriptor mechanism can be used to
associate into time series groups of files that are not internally self-documenting with respect to
time, however, it also shifts an additional burden onto the user of carefully checking the validity of
the STEPFILE records in the descriptor files.

Beginning with version 5.8 of Ferret the stepfiles may contain different scale and offset values for
the variables they contain. (p. 253). Ferret reads and applies the scale and offset values as data
from each stepfile is read. Note that the commands

yes? SAY `var, RETURN=nc_offset`

yes? SAY `var, RETURN=nc_scale`

return the latest scale and offset value that were applied.

The fields which are essential to consider are

$FORMAT_RECORD

 D_TYPE = ' MC' ,
 D_FORMAT = ' 1A',

which must be exactly as shown.

$BACKGROUND_RECORD

 D_TITLE = 'Put your data set title here',

where you can insert a data sets title to appear on plots and listings;

 D_T0TIME = '14-JAN-1980 14:00:00',

which corresponds exactly to the /T0 qualifier on the DEFINE AXIS command

 D_TIME_UNIT = 3600.0,

which contains the same information as /UNITS= on the DEFINE AXIS command encoded as
numbers of seconds . (/UNITS="minutes" corresponds to D_TIME_UNIT = 60., /UNITS="hours"
corresponds to D_TIME_UNIT = 3600., etc.)

 D_CALTYPE = '360_DAY',

to specify the name of the calendar if your time axis is not on the standard Gregorian calendar.
 See the discussion of time axes and calendars (p. 130) for more on the calendars available.

$STEPFILE_RECORD

 S_FILENAME = 'mtaa063-nc.001',

which points to the individual file names. Typically you will need one STEPFILE_RECORD for
each file in the series, however if the files are named with extension .001, .002, ... you can use
S_NUM_OF_FILES below.

 S_START = 17592.0,

which contains the time step value of the first time step in the file. (For help determining the time
step values use DEFINE AXIS to create the desired time axis (say, my_t_ax) and then use LIST
T[gt=my_t_ax] to see the dates and time steps.)

 S_END = 34309.0,

which contains the time step value of the last time step in the file (or group of files if
S_NUM_OF_FILES is greater than 1). If there is only a single time step in the file set S_END
identical to S_START.

 S_DELTA = 73.0,

which contains the delta value separating time steps within in the file. If there is only a single time
step in the file set S_DELTA = 1.

 S_NUM_OF_FILES = 23,

Normally S_NUM_OF_FILES should be omitted or should have a value of 1. Use it for the
special case that your files are named with ending .001, .002, in which case you can describe
them all with a single STEPFILE_RECORD as in the example. (S_DELTA must then also
describe the delta between the last time step in each file and the first time step in the next file of
the series.)

Ch10 Sec4.1. Tools for making descriptor files

Two Ferret Users have written tools to create multi-file NetCDF data sets. They are

1) A unix shell script, nc2mc which is available and documented at
http://www.mpch-mainz.mpg.de/~joeckel/nc2mc/

2) A perl script, make_des which is available and documented at
http://www.gfdl.noaa.gov/~atw/ferret/make_des

Ch10 Sec4.2. Example descriptor file

A typical MC descriptor file is given below. This file ties into a single data set the 23 files named
mtaa063-nc.001 through mtaa063-nc.024. The time steps are encoded in the descriptor file
through the S_START and S_END values.

Descriptor files have a space before the $ in the record headers, and comment lines begin with a *.
 In addition there are differences in the formatting of descriptor files depending on the operationg
system. Here is an FAQ which addresses these differences:

http://www.ferret.noaa.gov/Ferret/FAQ/system/linux_mc_descriptors.html

* NOAA/PMEL Tropical Modeling and Analysis Program, Seattle, WA. *
* created by MAKE_DESCRIPT rev. 4.01 *

$FORMAT_RECORD
 D_TYPE = ' MC',
 D_FORMAT = ' 1A',

http://www.ferret.noaa.gov/Ferret/FAQ/system/linux_mc_descriptors.html

 D_SOURCE_CLASS = 'MODEL OUTPUT',
$END
$BACKGROUND_RECORD
 D_EXPNUM = '0063',
 D_MODNUM = ' AA',
 D_TITLE = 'MOM model output forced by Sadler winds',
 D_T0TIME = '14-JAN-1980 14:00:00',
 D_TIME_UNIT = 3600.0,
 D_TIME_MODULO = .FALSE.,
 D_ADD_PARM = 15*' ',
$END
$MESSAGE_RECORD
 D_MESSAGE = ' ',
 D_ALERT_ON_OPEN = F,
 D_ALERT_ON_OUTPUT = F,
$END

$EXTRA_RECORD
$END

$STEPFILE_RECORD
 s_filename = 'mtaa063-nc.001',
 S_AUX_SET_NUM = 0,
 S_START = 17592.0,
 S_END = 34309.0,
 S_DELTA = 73.0,
 S_NUM_OF_FILES = 23,
 S_REGVARFLAG = ' ',
$END
**
$STEPFILE_RECORD
 s_filename = '**END OF STEPFILES**'

$END
**

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Chapter 11: WRITING EXTERNAL
FUNCTIONS

Ch11 Sec1. OVERVIEW

External functions are user-written Fortran routines which are called from the Ferret
command line just as internal Ferret functions (e.g. SIN, COS) are invoked. For
example, you might create a routine to compute the amplitudes of the Fourier transform
of a time series (the periodogram) and name your function "FFT_AMP". In Ferret you
would use it like this:

LET my_fft = FFT_AMP(my_time_series)

Once the variable my_fft is defined, it can be used in other expressions, plotted, etc.
External functions can be used in every way that Ferret internal functions are used and
are distinguished only by their appearance after internal functions when the user issues a
SHOW FUNC command.

A Ferret external function uses input arguments defined in a Ferret session and
computes a result with user-supplied Fortran code. The external function specifies how
the grid for the result will be generated. The axes can be inherited from the input
arguments or specified in the external function code.

Utility functions, linked in when the external function is compiled, obtain information
from Ferret about variables and grids. The utility functions are described in section 6 (p.
284).

Ferret external functions are compiled individually to create shared object (.so) files.
These are dynamically linked with Ferret at run time. Ferret looks for shared object files
in the directories specified in the FER_EXTERNAL_FUNCTIONS environment
variable.

Ch11 Sec2. GETTING STARTED

Ferret Version 5.0 and later contains everything you need to run the external functions

which are included with the distribution. The environment variable
FER_EXTERNAL_FUNCTIONS is defined, listing the directory where the shared
object files reside. To see a list of the included external functions and their arguments,
type

> ferret
…
yes? SHOW FUNC/EXTERNAL
Externally defined functions available to Ferret:
ADD_9(A,B,C,D,E,F,G,H,I)
 (demonstration function) adds 9 arguments
AVET(A)
 (demonstration function) returns the time average
 A: data to be time averaged
...

Ch11 Sec2.1. Getting example/development code

To write your own external functions, you will need to get source code and set up a
directory in which to work. All of the source code you need to get started (Makefiles,
common files, simple examples) can be obtained from the Ferret Home Page. Go to the
External Functions page and follow the instructions there.

You will need to download a tar file to get started. When you untar this file you will
find that the ef_utility/ directory contains the ferret_cmn subdirectory,
containing common files that you need to compile external functions. The
ef_utility/ directory must be in place before you can compile any of the other
external function code. The examples/ directory contains source code and a
Makefile. You will create further directories with your external functions source
code and Makefiles patterned on what is in the examples directory.

Also on the External Functions web page are documents about how to use code written
in Fortran 90 and on compiling code with an F95 compiler, contributed by Ferret users.

Ch11 Sec3. QUICK START EXAMPLE

http://www.ferret.noaa.gov/Ferret/External_Functions/

It's always easier to start coding from an example. Any of the external functions we
provide should be documented well enough to serve as a starting point for writing a new
function. In this section, we take the most trivial example function, pass_thru, and alter
it to do something a little more interesting, if no more useful.

Ch11 Sec3.1. The times2bad20 function

We'll use the pass_thru(...) function as a template, modifying it into a times2bad20(...)
function. This new function will multiply all values by 2.0 and will replace missing
value flags with the value 20.0.

Inside any of the example functions, the areas that you need to (are allowed to) modify
are set off with

c*********

c USER CONFIGURABLE PORTION

 —>Insert your code here<—

c USER CONFIGURABLE PORTION
c*********

Here's what you need to do to create the new function:

1. move to the examples/ directory

2. copy pass_thru.F to times2bad20.F

3. use your favorite editor to change each "pass_thru" to "times2bad20"

4. go down into the "times2bad20_init" section and change the description of the
function

5. go to the "times2bad20_compute" subroutine and change the code to look like this

 c* result(i,j,k,l) = bad_flag_result
 result(i,j,k,l) = 20

 ELSE

 c* result(i,j,k,l) = arg1(i,j,k,l)
 result(i,j,k,l) = 2 * arg1(i,j,k,l)

Assuming you have downloaded all of the ef_utility/ directory development code
and you are still in the examples/ directory, you should be able to (Figure 11_1)

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ch11_fig01.gif

 > make times2bad20.so
 > setenv FER_EXTERNAL_FUNCTIONS .
 > ferret
 …
 yes? use coads_climatology
 yes? let a = times2bad20(sst)
 yes? shade a[l=1]

Congratulations! You have just written your first external function.

Ch11 Sec4. ANATOMY OF AN EXTERNAL FUNCTION

Every Ferret external function contains an ~_init subroutine which describes the
external function's arguments and result grid and a ~_compute subroutine which
actually performs the calculation. Three other subroutines are available for requesting
memory allocation; creating axis limits for the result variable which are extended with
respect to the defined region (useful for derivative calculations, etc.); and creating
custom axes for the result.

For the following discussion we will assume that our external function is called efname
(with source code in a file named efname.F). Examples are also taken from the external
functions examples/ directory which you installed when you downloaded the
external functions code. This section will briefly describe the work done by the
~_init and ~_compute subroutines. The individual utility functions called by these
subroutines are described in the section on Utility Functions below.

When you name your external functions, be aware that Ferret will search its internal
function names before the external function names. So if you use a name that is already
in use, your function will not be called. Use SHOW FUNCTION from Ferret to list the
names that already are in use

Ch11 Sec4.1. The ~_init subroutine (required)

subroutine efname_init (id)

This subroutine specifies basic information about the external function. This
information is used when Ferret parses the command line and checks the number of
arguments; when it generates the output of SHOW FUNCTION/EXTERNAL; and in
determining the result grid.

The following code from examples/subtract.F shows a typical example of an
~_init subroutine. For an example with more arguments please look at
examples/add_9.F. For an example where a result axis is reduced with respect to
the equivalent input axis take a look at examples/percent_good_t.F.

 SUBROUTINE subtract_init(id)

 INCLUDE 'ferret_cmn/EF_Util.cmn'

 INTEGER id, arg

* *************************
* USER CONFIGURABLE PORTION
*
 CALL ef_set_desc(id,'(demonstration function) returns: A - B')

 CALL ef_set_num_args(id, 2) ! Maximum allowed is 9
 CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
 . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
 CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)

 arg = 1
 CALL ef_set_arg_name(id, arg, 'A')
 CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

 arg = 2
 CALL ef_set_arg_name(id, arg, 'B')
 CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
*
* USER CONFIGURABLE PORTION
* *************************

 RETURN
 END

Ch11 Sec4.2. The ~_compute subroutine (required)

subroutine efname_compute (id, arg_1, arg_2, ..., result,
wkr_1, wrk_2, ...)

This subroutine does the actual calculation. Arguments to the external function and any
requested working storage arrays are passed in. Dimension information for the
subroutine arguments is obtained from Ferret common blocks in
ferret_cmn/EF_mem_subsc.cmn. The mem1lox:mem1hix, etc. values are
determined by Ferret and correspond to the region requested for the calculation.@Body
Text = In the ~_compute subroutine you may call other subroutines which are not part
of the efname_compute.F source file.

 SUBROUTINE subtract_compute(id, arg_1, arg_2, result)

 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

 INTEGER id

 REAL bad_flag(EF_MAX_ARGS), bad_flag_result
 REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
 . mem1loz:mem1hiz, mem1lot:mem1hit)
 REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
 . mem2loz:mem2hiz, mem2lot:mem2hit)
 REAL result(memreslox:memreshix, memresloy:memreshiy,
 . memresloz:memreshiz, memreslot:memreshit)

* After initialization, the 'res_' arrays contain indexing
information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.

 INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
 INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . arg_incr(4,EF_MAX_ARGS)

* **************************
* USER CONFIGURABLE PORTION
*

 INTEGER i,j,k,l
 INTEGER i1, j1, k1, l1

 INTEGER i2, j2, k2, l2

 CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
 CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

 …

*
* USER CONFIGURABLE PORTION
* *************************
 RETURN
 END

Please see the "Loop Indices" section for the example calculation.4.3

Ch11 Sec4.3. The ~_work_size subroutine
(required when work arrays are defined)

This routine allows the external function author to request that Ferret allocate memory
(working storage) for use by the external function. The memory allocated is passed to
the external function when the ~compute subroutine is called. The working storage
arrays are assumed to be REAL*4 arrays; adjust the size of the arrays for other data
types. See the sample code under ef_get_coordinates (p. 294) for an example of
allocating a REAL*8 work array. The working storage is deallocated after the
~compute subroutine returns.

When working storage is to be requested, a call to ef_set_num_work_arrays
must be in the ~init subroutine:

SUBROUTINE efname_init (id)
…
CALL ef_set_num_work_arrays (id,2)

A maximum of 9 work arrays may be declared. At the time the ~work_size
subroutine is called by Ferret, any of the utility functions that retrieve information from
Ferret may be used in the determination of the appropriate working storage size.

Here is an example of a ~work_size subroutine:

 SUBROUTINE efname_work_size(id)
 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
 INTEGER id
*
* ef_set_work_array_lens(id, array #, X len, Y len, Z len, T len)
*
 INTEGER nx, ny, id
 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
 . arg_incr(4,1:EF_MAX_ARGS)
 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

 NX = 1 + (arg_hi_ss(X_AXIS,ARG1) - arg_lo_ss(X_AXIS,ARG1))
 NY = 1 + (arg_hi_ss(Y_AXIS,ARG1) - arg_lo_ss(Y_AXIS,ARG1))

 CALL ef_set_work_array_lens(id,1,NX,NY,1,1)
 CALL ef_set_work_array_lens(id,2,NX,NY,1,1)

 RETURN

In the argument list of the ~compute subroutine, the work array(s) come after the
result variable. Declare the workspace arrays using index bounds wrk1lox:wrk2hix, …
which were set by the ef_set_work_array_lens call above.

 SUBOUTINE efname_compute (arg_1, result, workspace1, workspace2)
…

* Dimension the work arrays
 REAL workspace1(wrk1lox:wrk1hix, wrk1loy:wrk1hiy,
 . wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
 REAL workspace2(wrk2lox:wrk2hix, wrk2loy:wrk2hiy,
 . wrk2loz:wrk2hiz, wrk2lot:wrk2hit)

Ch11 Sec4.4. The ~_result_limits subroutine
(required if result has a custom or abstract axis)

The result limits routine sets the limits on ABSTRACT and CUSTOM axes created by the

external function.

An example ~result_limits routine might look like this:

 SUBROUTINE my_result_limits(id)
 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INTEGER id, arg, NF
*
 INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . arg_incr(4,EF_MAX_ARGS)
 INTEGER lo, hi

 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

 arg = 1
 lo = 1
 hi = (arg_hi_ss(T_AXIS,arg) - arg_lo_ss(T_AXIS,arg) + 1)/ 2
 call ef_set_axis_limits(id, T_AXIS, lo, hi)

 RETURN
 END

Ch11 Sec4.5. The ~_custom_axes subroutine
(required if result has a custom axis)

The ~custom_axes subroutine allows the external function author to create new axes
that will be attached the the result of the ~compute subroutine. An example of such a
function might take time series data with a time axis and create, as a result, a Fourier
transform with a frequency axis.

The ~custom_axes subroutine must be used with care because not all the Ferret
internal information is available to the external function at the time Ferret calls this
routine. Ferret must determine the grid on which a variable is defined before it actually
evaluates the variable. This is fundamental to the delayed evaluation framework -- the
aspect of Ferret that makes it possible to work with multi-gigabyte data sets while
having minimal awareness of memory limitations. The ~custom_axes routines are
called at the time that Ferret determines grid. Certain types of information are not
available to Ferret (or to you, as author of an external function) during this time. The
information which is not available is

1. the values of arguments to the function (capability to get the value of a scalar
argument is being implemented for a future version)

2. context information specified with SET REGION

3. context information set with command qualifiers such as

 CONTOUR/X=130e:80w

Items two and three are because this information is mutable -- it may be changed when
the function is actually invoked.

The context information which IS available is

 1. information that is actually contained in the function call, such as the X limits of

 LET myvar = MY_EFN(v[x=130e:80w])

 2. information that is embedded in nested variable definitions, such as the X limits of

 LET tmp_var = v[x=130e:80w]
 LET myvar = MY_EFN(tmp_var)

If no context information is available through these means then the context information
supplied by the call to ef_get_arg_subscripts will be the full span (low and high limits)
of the relevant axes.

Examples:

You can set an axis explicitly in subroutine my_fcn_custom_axes:

SUBROUTINE custom_custom_axes(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
CALL ef_set_custom_axis(id, T_AXIS, 0.0, 1000.0, 25.0, 'Hertz', NO)
RETURN

END

Also, you can define an axis using information about the argument, as in the FFT
functions which set up a frequency axis based on the input time axis (somewhat
simplified here):

SUBROUTINE ffta_sample_custom_axes(id)

INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
INTEGER nfreq_lo_l, nfreq_hi_l

INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . arg_incr(4,EF_MAX_ARGS)
INTEGER arg
INTEGER nfreq, nd

REAL yquist, freq1, freqn
REAL boxsize(1)

arg = 1
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

CALL ef_get_box_size(id, arg, T_AXIS, arg_lo_ss(T_AXIS,arg),
 . arg_lo_ss(T_AXIS,arg), boxsize)

nfreq_lo_l = arg_lo_ss(T_AXIS,arg)
nfreq_hi_l = arg_hi_ss(T_AXIS,arg)

nd = abs(nfreq_hi_l - nfreq_lo_l) + 1

nfreq = nd/2
yquist = 1./(2.*boxsize(1)) ! Nyquist frequency

freq1 = 1.* yquist/ float(nfreq)
freqn = 1.001*yquist

C Set label for the frequency axis CYC/units.

outunits = 'cyc/day'
CALL ef_set_custom_axis (id, T_AXIS, freq1, freqn, freq1, outunits,
NO)

RETURN
END

Ch11 Sec5. NOTES AND SUGGESTIONS

Ch11 Sec5.1. Inheriting axes

When creating an external function, you can get Ferret to do a lot of conformability
checking for you if you "inherit axes" properly. This means that Ferret can be
responsible for making sure that the arguments you pass to the function are of the
proper dimensionality to be combined together in basic operations such as addition,
multiplication etc. For any given axis orientation, X, Y, Z, or, T, two arguments are said
to be conformable on that axis if 1) they are either of the same length, or 2) at least one
of the arguments has a size of 1 on the axis. (The terminology "size of 1" may
equivalently be thought of as a size of 0. In other words, the data is normal to this axis.)
When Ferret encounters a problem it will send an error message rather than passing the
data to your external function which might result in a crash.

To get Ferret to do this kind of checking you should inherit axes from as many
appropriate arguments as possible. For instance, in subtract.F we have the following
sections of code:

 subtract_init(...)

…
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
...

This means that the axes of the result, and the index range of the result on those axes,
will be determined by arguments.

…
arg = 1
CALL ef_set_arg_name(id, arg, 'A')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

arg = 2

CALL ef_set_arg_name(id, arg, 'B')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
...

Here we specify that each result axis is dependent upon the axes from both arguments.
When Ferret sees this, it knows the arguments must be conformable before it passes
them to the external function.

The advantages of this approach are best understood by thinking about this example
function "MY_ADD_FUNCTION," which performs a simple addition:

LET arg1 = X[x=0:1:.1]
LET arg2 = Y[Y=101:102:.05]
LET my_result = MY_ADD_FUNCTION(arg1, arg2)

The desired outcome is that "my_result" is a 2-dimensional field which inherits its X
axis from arg1 and its Y axis from arg2.

If arguments and result are on the same grid, you should inherit all axes from all
arguments. In general, you should inherit axes from as many arguments as possible.

Ch11 Sec5.2. Loop indices

Note: Array indices need not start at 1.

Because the data passed to an external function is often a subset of the full data set,
array indices need not start at 1.

Note: Indices on separate arguments are not necessarily the same.

This might occur, for instance, with variables from different data sets.

Because of this, we need to ask Ferret what the appropriate index values are for the
result axes and for each axis of each argument. We also need to know whether the
increment for each axis of each argument is 0 or 1. An increment of 0 would be
returned, for example, as the Y axis increment of an argument which which was only
defined on the X axis. The data for this argument would be replicated along the Y axis

when needed in a calculation.

The following section of code from subtract.F retrieves the index and increment
information:

…
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
...

Once we have this information we must make sure that we don't mix and match indices.
It's possible that you can write code which will work in the very simplest cases but will
fail when you try something like:

yes? let a = my_func(sst[d=1],airt[d=2])
yes? plot a[l=@ave]

The solution is straightforward if not very pretty: Assign a separate index to each axis of
each argument and index them all separately. The code in subtract.F shows how to
do it with two arguments:

 …
 i1 = arg_lo_ss(X_AXIS,ARG1)
 i2 = arg_lo_ss(X_AXIS,ARG2)
 DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)

 j1 = arg_lo_ss(Y_AXIS,ARG1)
 j2 = arg_lo_ss(Y_AXIS,ARG2)
 DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)

 k1 = arg_lo_ss(Z_AXIS,ARG1)
 k2 = arg_lo_ss(Z_AXIS,ARG2)
 DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)

 l1 = arg_lo_ss(T_AXIS,ARG1)
 l2 = arg_lo_ss(T_AXIS,ARG2)
 DO 100 l=res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)

 IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(1) .OR.
 . arg_2(i2,j2,k2,l2) .EQ. bad_flag(2)) THEN

 result(i,j,k,l) = bad_flag_result

 ELSE

 result(i,j,k,l) = arg_1(i1,j1,k1,l1) -
 . arg_2(i2,j2,k2,l2)

 END IF

 l1 = l1 + arg_incr(T_AXIS,ARG1)
 l2 = l2 + arg_incr(T_AXIS,ARG2)
100 CONTINUE

 k1 = k1 + arg_incr(Z_AXIS,ARG1)
 k2 = k2 + arg_incr(Z_AXIS,ARG2)
200 CONTINUE

 j1 = j1 + arg_incr(Y_AXIS,ARG1)
 j2 = j2 + arg_incr(Y_AXIS,ARG2)
300 CONTINUE

 i1 = i1 + arg_incr(X_AXIS,ARG1)
 i2 = i2 + arg_incr(X_AXIS,ARG2)
400 CONTINUE
 ...

Ch11 Sec5.3. Reduced axes

For external functions we introduce the concept of "axis reduction." The result of an
external function will have axes which are either RETAINED or REDUCED with
respect to the argument axes from which they are inherited. By default, all result axes
have their axis reduction flag set to RETAINED. Every result axis which has it axis
inheritance flag set to IMPLIED_BY_ARGS will have the same extent (context) as the
argument axis from which it inherits. Setting the axis reduction flag to REDUCED
means that the result axis is reduced to a point by the external function.

The axis reduction flag only needs to be applied when the result is reduced to a point
but SET REGION information should still be applied to the external function
arguments. (e.g. a function returning a status flag) In such a case the result axes should
be IMPLIED_BY_ARGS and REDUCED. (as opposed to NORMAL and RETAINED)

The percent_good_t.F function is a good example of where the axis reduction flag

needs to be set. This function takes a 4D region of data and returns a time series of
values representing the percentage of good data at each time point. Inside the
percent_good_t_init subroutine we see that the X, Y and Z axes are reduced
with respect to the incoming argument:

* *************************
* USER CONFIGURABLE PORTION
*
*
 CALL ef_set_desc(id,
 . '(demonstration function) returns % good data at each time')
 CALL ef_set_num_args(id, 1)
 CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
 . IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, IMPLIED_BY_ARGS)
 CALL ef_set_axis_reduction(id, REDUCED, REDUCED, REDUCED,
 . RETAINED)
 CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
 arg = 1
 CALL ef_set_arg_name(id, arg, 'A')
 CALL ef_set_arg_desc(id, arg, 'data to be checked')
 CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)
*
*
* USER CONFIGURABLE PORTION
* *************************

This arrangement allows the user to specify an X/Y/Z region of interest and have this
region information used when the argument is passed to the function. If we had
specified X/Y/Z as NORMAL axes, Ferret would have understood this to mean that all
region information for these three axes can be ignored when the percent_good_t
function is called. This is not what we want.

Ch11 Sec5.4. String Arguments

Ferret can pass strings to external functions. This may be useful if you are writing
external functions to write a new output format, for example, and wish to pass the
output filename as an argument.

By default, all arguments are assumed to be of type FLOAT_ARG. In the ~init
subroutine, the external function must tell Ferret which arguments are to be handled as

strings:

arg = 1
CALL ef_set_arg_type(id, arg, STRING_ARG)
CALL ef_set_arg_name(id, arg, 'message')
CALL ef_set_arg_desc(id, arg, 'String to be written when
executing.')
CALL ef_set_axis_influence(id, arg, YES, YES, YES, YES)

In the ~compute subroutine, a pointer to the string argument is passed in and
dimensioned as any other argument. A text variable must be declared and a utility
function is used to get the actual text string. As an example:

 SUBROUTINE string_args_compute(id, arg_1, arg_2, result)

 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'

 INTEGER id

 REAL bad_flag(1:EF_MAX_ARGS), bad_flag_result
 REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
 . mem1loz:mem1hiz, mem1lot:mem1hit)

 REAL arg_2(mem2lox:mem2hix, mem2loy:mem2hiy,
 . mem2loz:mem2hiz, mem2lot:mem2hit)
 REAL result(memreslox:memreshix, memresloy:memreshiy,
 . memresloz:memreshiz, memreslot:memreshit)

 INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
 . arg_incr(4,1:EF_MAX_ARGS)

 CHARACTER arg1_text*160

* *************************
* USER CONFIGURABLE PORTION
*
 INTEGER i,j,k,l
 INTEGER i1, j1, k1, l1

 CALL ef_get_arg_string(id, 1, arg1_text)

 WRITE(6,49) arg1_text
49 FORMAT ('The text for arg1 is : ''',a,'''')

 …

Ch11 Sec6. UTILITY FUNCTIONS

The lists below describe the utility functions built into Ferret which are available to the
external function writer. These are used to set parameters associated with the external
function and to retrieve information provided by Ferret. (Input variables, sending
information to Ferret, are in plain type and output variables, getting information from
Ferret, are in italic.)

Ch11 Sec6.1. EF_Util.cmn

External functions need to include the EF_Util.cmn file in each subroutine in order
to use various pre-defined parameters. These parameters are defined in the table below:

Parameters defined in EF_Util.cmn

To make the code more readable:

X_AXIS (=1) ARG1 (=1) ARG5 (=5) ARG9 (=9)

Y_AXIS (=2) ARG2 (=3) ARG6 (=6) YES (=2)

Z_AXIS (=3) ARG3 (=3) ARG7 (=7) NO (=0)

T_AXIS (=4) ARG4 (=4) ARG8 (=8)

Internal parameters for Ferret:

CUSTOM result axis is defined by the external function

IMPLIED_BY_ARGS result axis is inherited from one (or more) of the arguments

NORMAL this axis does not exist in the result

ABSTRACT result axis is an indexed axis [1:N]

RETAINED result axis has same extent as argument axis

REDUCED result axis is reduced to a point

Ch11 Sec6.2. Available utility functions

Setting Parameter

● ef_set_desc(id, desc) (p. 286)
● ef_set_num_args(id, num) (p. 286)
● ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn) (p. 287)
● ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc, Tsrc) (p. 286)
● ef_set_arg_name(id, arg, name) (p. 287)
● ef_set_arg_desc(id, arg, desc) (p. 287)
● ef_set_arg_unit(id, arg, unit) (p. 287)
● ef_set_arg_type(id, arg, type) (p. 288)
● ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn, Tyn) (p. 288)
● ef_set_axis_reduction(id, Xred, Yred, Zred, Tred) (p. 289)
● ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt) (p. 288)
● ef_set_axis_limits(id, axis, lo, hi) (p. 289)
● ef_set_custom_axis(id, axis, lo, hi, delta, unit, modulo) (p. 289)
● ef_set_num_work_arrays(id, num) (p. 290)

● ef_set_work_array_dims(id, array, Xlo, Ylo, Zlo, Tlo, Xhi, Yhi, Zhi, Thi) (p.
290)

Getting Information

For all calculations

● ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr) (p. 290)
● ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr) (p. 292)
● ef_get_bad_flags(id, bad_flag, bad_flag_result) (p. 294)

Text

● ef_get_arg_info(id, arg, name, title, units) (p. 291)
● ef_get_arg_string(id, arg, text) (p. 291)
● ef_get_axis_info(id, arg, name, units, bkwd, modulo, regular) (p. 292)
● ef_get_axis_dates(id, arg, tax, numtimes, datebuf) (p. 292)

Values

● ef_get_arg_ss_extremes(id, arg, ss_min, ss_max) (p. 293)
● ef_get_coordinates(id, arg, axis, lo, hi, coords) (p. 294)
● ef_get_box_size(id, arg, axis, lo, hi, size) (p. 295)
● ef_get_box_limits(id, arg, axis, lo, hi, lo_lims, hi_lims) (p. 296)
● ef_get_one_val(id, arg, value) (p. 297)

Other

● ef_version_test(version) (p. 297)
● ef_bail_out(id, text) (p. 297)

Ch11 Sec6.2.1. ef_set_desc(id, desc)

Assign a text string description to the external function.

Input arguments:

1. INTEGER id: external function's ID number

2. CHARACTER*(*) desc: description of this function

Ch11 Sec6.2.2. ef_set_num_args(id, num)

Specify the number of arguments this function will accept. The maximum number of
arguments allowed is 9

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER num: number of arguments for this function

Ch11 Sec6.2.3. ef_set_axis_inheritance(id, Xsrc, Ysrc, Zsrc,
Tsrc)

Specify where the result axes will come from. The acceptable values for each axis will
be one of:

CUSTOM result axis is defined by the external function

IMPLIED_BY_ARGS result axis is inherited from one (or more) of the arguments

NORMAL this axis does not exist in the result

ABSTRACT result axis is an indexed axis [1:N]

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER Xsrc: inheritance flag for the X axis

3. INTEGER Ysrc: inheritance flag for the Y axis

4. INTEGER Zsrc: inheritance flag for the Z axis

5. INTEGER Tsrc: inheritance flag for the T axis

Ch11 Sec6.2.4. ef_set_piecemeal_ok(id, Xyn, Yyn, Zyn, Tyn)

Tell Ferret whether it is ok to break up calculations along a particular axis. (Not
implemented as of Ferret v5.22, EF version 1.3)

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER Xyn: yes/no flag for the X axis

3. INTEGER Yyn: yes/no flag for the Y axis

4. INTEGER Zyn: yes/no flag for the Z axis

5. INTEGER Tyn: yes/no flag for the T axis

Ch11 Sec6.2.5. ef_set_arg_name(id, arg, name)

Assign a text string name to an argument.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. CHARACTER*(*) name: argument name

Ch11 Sec6.2.6. ef_set_arg_desc(id, arg, desc)

Assign a text string description to an argument.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. CHARACTER*(*) desc: argument description

Ch11 Sec6.2.7. ef_set_arg_unit(id, arg, unit)

Assign a text string to an argument's units.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. CHARACTER*(*) unit: unit description

Ch11 Sec6.2.8. ef_set_arg_type(id, arg, type)

Specify the type of an argument as either FLOAT_ARG or STRING_ARG. In the
~_compute subroutine, the ef_get_arg_string() function is used to obtain the
desired text string.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER type: either FLOAT_ARG or STRING_ARG

Ch11 Sec6.2.9. ef_set_axis_extend(id, arg, axis, lo_amt, hi_amt)

Tell Ferret to extend the range of data passed for an argument. This is useful for cases
like smoothers where the result at a particular point depends upon a range of input
values around that point.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo_amt: extension to the lo range (–1 means get one more point than
in the result)

5. INTEGER hi_amt: extension to the hi range (+1 means get one more point than
in the result)

Ch11 Sec6.2.10. ef_set_axis_influence(id, arg, Xyn, Yyn, Zyn,
Tyn)

Specify whether this argument's axes "influence" the result axes. A value of YES for a
particular axis means that the result should have the same axis as this argument. If the
result should have the same axis as several input arguments, then each argument should
specify YES for the axis in question. Note that ef_set_axis_inheritance must
have specified IMPLIED_BY_ARGS for this axis.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER Xyn: influence flag for the X axis

4. INTEGER Yyn: influence flag for the Y axis

5. INTEGER Zyn: influence flag for the Z axis

6. INTEGER Tyn: influence flag for the T axis

Ch11 Sec6.2.11. ef_set_axis_reduction(id, Xred, Yred, Zred,
Tred)

Specify whether the result axes are RETAINED or REDUCED with respect to the
argument axes from which they are inherited. Setting the axis reduction flag to
REDUCED means that the result axis is reduced to a point by the external function. The
axis reduction flag need only be set when the result is reduced to a point but SET
REGION information should still be applied to the external function arguments.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER Xred: reduction flag for the X axis

3. INTEGER Yred: reduction flag for the Y axis

4. INTEGER Zred: reduction flag for the Z axis

5. INTEGER Tred: reduction flag for the T axis

Ch11 Sec6.2.12. ef_set_axis_limits(id, axis, lo, hi)

Specify the lo and hi limits of an axis. (This is not needed for most functions and must
appear in a separate subroutine named ~func_name~_result_limits(id)).

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER axis: axis number

3. INTEGER lo: index value of the lo range of this axis

4. INTEGER hi: index value of the hi range of this axis

Ch11 Sec6.2.13. ef_set_custom_axis(id, axis, lo, hi, delta, unit,
modulo)

Create a custom axis. This is only used by functions which create a custom axis and
must appear in a separate subroutine named ~func_name~_custom_axes(id).
 See also the discussion of the custom_axis subroutine (p. 277)

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER axis: axis number

3. REAL lo: coordinate value of the lo range of this axis

4. REAL hi: coordinate value of the hi range of this axis

5. REAL delta: increment for this axis

6. CHARACTER*(*) unit: unit for this axis

7. INTEGER modulo: flag for modulo axes (1 = modulo)

Ch11 Sec6.2.14. ef_set_num_work_arrays(id, nwork)

Set the number of work arrays to be allocated. The maximum number of work arrays
allowed is 9.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER nwork: number of storage arrays

Ch11 Sec6.2.15. ef_set_work_array_dims(id, iarray, xlo, ylo,
zlo, tlo, xhi, yhi, zhi, thi)

Set the working array axis lengths.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarray: array number

3. INTEGER xlo: index value of the lo range of x axis

4. INTEGER ylo: index value of the lo range of y axis

5. INTEGER zlo: index value of the lo range of z axis

6. INTEGER tlo: index value of the lo range of t axis

7. INTEGER xhi: index value of the hi range of x axis

8. INTEGER yhi: index value of the hi range of y axis

9. INTEGER zhi: index value of the hi range of z axis

10. INTEGER thi: index value of the hi range of t axis

Ch11 Sec6.2.16. ef_get_res_subscripts(id, res_lo_ss, res_hi_ss,
res_incr)

Return lo and hi indices and increments to be used in looping through the calculation of
the result.

Input arguments:

1. INTEGER id: external function's ID number

Output arguments:

1. INTEGER res_lo_ss(4): the lo end indices for the X, Y, Z, T axes of the

result

2. INTEGER res_hi_ss(4): the hi end indices for the X, Y, Z, T axes of the
result

3. INTEGER res_incr(4): the increment to be applied to the X, Y, Z, T axes of
the result

Sample code:

CALL ef_get_res_subscripts(id,
res_lo_ss, res_hi_ss, res_incr) ... DO 400 i=res_lo_ss(X_AXIS),
res_hi_ss(X_AXIS) DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
... 300 CONTINUE 400 CONTINUE

Ch11 Sec6.2.17. ef_get_arg_info(id, iarg, arg_name, arg_title,
arg_units)

Return strings describing argument: name, title, units.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

Output arguments:

1. CHARACTER*24 arg_name: the name of the argument

2. CHARACTER*128 arg_title: title associated with the argument

3. CHARACTER*32 arg_units: the argument's units.

Ch11 Sec6.2.18. ef_get_arg_string(id, iarg, text)

Return the string associated with an argument of type STRING_ARG. The maximum
length for the string ist 160 characters.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

Output arguments:

1. CHARACTER*(*) text: the actual text string for the argument

Sample code:

 …

 CHARACTER arg_text*160

* *************************
* USER CONFIGURABLE PORTION
*
*
 INTEGER i,j,k,l
 INTEGER i1, j1, k1, l1

 CALL ef_get_arg_string(id, 1, arg_text)
 WRITE(6,49) arg_text
49 FORMAT ('The text is : ''',a,'''')

 …

Ch11 Sec6.2.19. ef_get_axis_info(id, iarg, axname, ax_units,
backward, modulo, regular)

Return strings describing argument: name, title, units.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

Output arguments:

1. CHARACTER*16 ax_name(4): the name of the four axes

2. CHARACTER*16 ax_units(4): units of the four axes

3. LOGICAL backward(4): true if axis is backward axis

4. LOGICAL modulo(4): true if axis is modulo axis

5. LOGICAL regular(4): true if axis is regular axis

Ch11 Sec6.2.20. ef_get_axis_dates(id, iarg, taxis, numtimes,
datebuf)

Returns the string date buffer associated with the time axis of an argument.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER iarg: argument number

3. REAL*8 taxis(numtimes): time axis coordinate values

4. INTEGER numtimes: number of time

Output arguments:

1. CHARACTER*20 datebuf(numtimes): the string-date buffer for each time.

Ch11 Sec6.2.21. ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss,
arg_incr)

Return lo and hi indices and increments to be used in looping through the calculation of
the result.. See the discussion under custom_axis (p. 277) if you call
ef_get_arg_subscripts to generate a custom axis.

Input arguments:

1. INTEGER id: external function's ID number

Output arguments:

1. INTEGER arg_lo_ss(4,EF_MAX_ARGS): the lo end indices for the X, Y, Z,
T axes of each argument

2. INTEGER arg_hi_ss(4,EF_MAX_ARGS): the hi end indices for the X, Y, Z,
T axes of each argument

3. INTEGER arg_incr(4,EF_MAX_ARGS): the increment to be applied to the
X, Y, Z, T axes of each argument

Sample code:

INTEGER i,j,k,l
INTEGER i1, j1, k1, l1
INTEGER i2, j2, k2, l2

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

i1 = arg_lo_ss(X_AXIS,ARG1)
i2 = arg_lo_ss(X_AXIS,ARG2)

DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
 …
 i1 = i1 + arg_incr(X_AXIS,ARG1)
 i2 = i2 + arg_incr(X_AXIS,ARG2)
400 CONTINUE

Ch11 Sec6.2.22. ef_get_arg_ss_extremes(id, num_args, ss_min,
ss_max)

Return the maximum and minim index values for all the arguments. These define the
domain of the data.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER num_args: number of arguments for which to return index extremes

Output arguments:

1. INTEGER ss_min(4,EF_MAX_ARGS): the minimum indices for the X, Y, Z,
T axes of each argument

2. INTEGER ss_max(4,EF_MAX_ARGS): the maximum indices for the X, Y, Z,
T axes of each argument

Example:

INTEGER id, num_args
INTEGER ss_min(4,EF_MAX_ARGS), ss_max(4,EF_MAX_ARGS)
num_args = 3
CALL ef_get_arg_ss_extremes(id, num_args, ss_min, ss_max)

Ch11 Sec6.2.23. ef_get_bad_flags(id, bad_flag, bad_flag_result)

Return the missing value flags for each argument and for the result.

Input arguments:

1. INTEGER id: external function's ID number

Output arguments:

1. REAL bad_flag(EF_MAX_ARGS): missing value flags for each argument

2. REAL bad_flag_result: missing value flag for the result

Sample code:

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

…

IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(ARG1)) THEN
 result(i,j,k,l) = bad_flag_result
ELSE
 ...

Ch11 Sec6.2.24. ef_get_coordinates(id, arg, axis, lo, hi, coords)

Return the "world coordinates" associated with a particular arg, axis and lo:hi range.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo: lo index of desired range

5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL*8 coords(*): array of "world coordinate" values (NB_ these values are
associated with index values lo:hi but are returned as coords(1:hi-lo).)

Sample code: in the work_size subroutine, define twice as many elements as
coordinates so as to have storage for REAL*8 numbers

*

 SUBROUTINE myfcn_work_size(id)
 INCLUDE 'ferret_cmn/EF_Util.cmn'
 INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
 INTEGER id

* Set the work arrays, X/Y/Z/T dimensions

 INTEGER nxout, nx2
 INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
 arg_incr(4,1:EF_MAX_ARGS)

 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)

 nxout = 1 + arg_hi_ss(X_AXIS,ARG4) - arg_lo_ss(X_AXIS,ARG4)
 nx2 = nxout* 2

* Define work array XAX

 CALL ef_set_work_array_dims (id, 1, 1, 1, 1, 1, nx2, 1, 1, 1)
 RETURN
 END

In the compute subroutine, dimension the REAL*8 coordinate array with half the
wkr1hix dimension (wrk1lox:wrk1hix, etc are defined by the work_size subroutine)

 SUBROUTINE myfcn_compute(id, arg_1, arg_2, result, xax)
…
 REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy, mem1loz:mem1hiz,
 . Mem1lot:mem1hit)
 REAL result(memreslox:memreshix, memresloy:memreshiy,
 . memresloz:memreshiz, memreslot:memreshit)

 INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
 INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
 . Arg_incr(4,EF_MAX_ARGS)

C Dimension the work array: X dimension was defined twice as large
C as the # coordinates, for double precision work array.

 REAL*8 xax(wrk1lox:wrk1hix/2, wrk1loy:wrk1hiy,
 . wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
…

 CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
 CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
 CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)

 CALL ef_get_coordinates(id, ARG1, X_AXIS, arg_lo_ss(X_AXIS,

 . ARG1), arg_hi_ss(X_AXIS, ARG1), xax)

…

 dummy = 1
 DO 30 i = arg_lo_ss(Y_AXIS, ARG1), arg_hi_ss(Y_AXIS, ARG1)
 cstr(i) = 1.0 / cos(xax(dummy) * (1.0/radian))

 dummy = dummy + 1
30 CONTINUE

Ch11 Sec6.2.25. ef_get_box_size(id, arg, axis, lo, hi, size)

Return the box sizes (in "world coordinates") associated with a particular arg, axis and
lo:hi range.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo: lo index of desired range

5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL size(*): array of box size values (NB_ these values are associated with
index values lo:hi but are returned as coords(1:hi-lo).)

Sample code:

REAL tk_y(wrk1lox:wrk1hix, wrk1loy:wrk1hiy/2,
 . wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
REAL tk_dx(wrk2lox:wrk2hix, wrk2loy:wrk2hiy,
 . wrk2loz:wrk2hiz, wrk2lot:wrk2hit)

INTEGER dummy

…

CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
CALL ef_get_coordinates(id, ARG1, Y_AXIS, arg_lo_ss(Y_AXIS, ARG1),
. arg_hi_ss(Y_AXIS, ARG1), tk_y)
CALL ef_get_box_size(id, ARG1, X_AXIS, arg_lo_ss(X_AXIS, ARG1),
. arg_hi_ss(X_AXIS, ARG1), tk_dx)

…

dummy = 1
DO 20 i = arg_lo_ss(X_AXIS, ARG1), arg_hi_ss(X_AXIS, ARG1)
 dxt4r(i) = 1.0 / (4.0 * tk_dx(dummy) * radius/radian)
 dummy = dummy + 1
20 CONTINUE

Ch11 Sec6.2.26. ef_get_box_limits(id, arg, axis, lo, hi, lo_lims,
hi_lims)

Return the box limits (in "world coordinates") associated with a particular arg, axis and
lo:hi range.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

3. INTEGER axis: axis number

4. INTEGER lo: lo index of desired range

5. INTEGER hi: hi index of desired range

Output arguments:

1. REAL lo_lims(*): array of box lower limit values (NB_ these values are
associated with index values lo:hi but are returned as coords(1:hi-lo).)

2. REAL hi_lims(*): array of box upper limit values (NB_ these values are
associated with index values lo:hi but are returned as coords(1:hi-lo).)

Ch11 Sec6.2.27. ef_get_one_val(id, arg, value)

Return the value of 1×1×1×1 variable.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER arg: argument number

Output arguments:

1. REAL value : The value of the variable

Ch11 Sec6.2.28. ef_version_test (version)

Return the version number of the external functions code that is in place.

Output argument:

1. REAL version : The version number

Ch11 Sec6.2.29. ef_bail_out(id, text)

Bail out of an external function, returning to Ferret and issuing a message to the user.

Input arguments:

1. INTEGER id: external function's ID number

2. INTEGER text: text string to output.

The bail-out message looks like this, where the text supplied in the call to ef_bail_out is
on the second line:

Bailing out of external function "ffta":
 Time axis must be a regular axis
**ERROR: : error in external function

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Part II: COMMANDS REFERENCE

Ref Sec1. ALIAS

An alias for DEFINE ALIAS (p. 312).

Ref Sec2. CANCEL

Cancels a program state or definition—generally paired with a SET or DEFINE command. See
commands SET (p. 366) and DEFINE (p. 312) for further information.

Arguments:

The arguments, which are names of variables, data sets, or other definitions can be specified
using wildcards. The * wildcard matches any number of characters in the name; the ? wildcard
matches exactly one character.

Ref Sec2.1. CANCEL ALIAS

Cancels a user-defined command alias.

yes? CANCEL ALIAS ALIAS_NAME

The command UNALIAS is an alias for CANCEL ALIAS.

Ref Sec2.2. CANCEL AXIS

/MODULO /DEPTH /ALL

CANCEL AXIS forms the complement to DEFINE AXIS, or SET AXIS It is also applicable
to "persistent" axes which are defined by netCDF files such as climatological_axes.cdf -- axes
which are not associated with any variables in the netCDF file, itself, and are not automatically
deleted when the data set is canceled.

yes? CANCEL AXIS AXIS_NAME

Attempts to CANCEL AXIS on a axis which is used by a variable in a currently open data set
will be rejected with a message indicating the reason.

Command qualifiers for CANCEL AXIS:

CANCEL AXIS/MODULO

Cancels the modulo nature of a user-defined axis.

yes? CANCEL AXIS/MODULO my_x_axis

or

yes? CANCEL AXIS/MODULO my_t*

CANCEL AXIS/DEPTH

Cancels the depth setting of a Z axis, which may have been set with a positive="down"
attribute in a NetCDF file, or for a user-defined axis with a DEFINE AXIS/DEPTH or SET
AXIS/DEPTH command. If applied to an X, Y, or T axis, this qualifier is ignored.

yes? CANCEL AXIS/DEPTH my_z_axis

CANCEL AXIS/ALL

Cancels all axes that have been defined by the user, and restores any coordinate storage that
was used to define irregular axes. It does not cancel axes defined when a data set is opened.

CANCEL DATA_SET

/ALL /NOERROR

Removes the specified data set from the list of available sets.

yes? CANCEL DATA_SET dset1, dset2, ..., dsetn

 where each dset may be the name or number of a data set; or

yes? CANCEL DATA/ALL

(See also SET DATA_SET, p. 368, and SHOW DATA SET, p. 403.)

Command qualifiers for CANCEL DATA_SET:

CANCEL DATA/ALL

Eliminates all data sets from the list of accessible data sets.

CANCEL DATA/NOERROR

Suppresses the error message otherwise generated when a data set that was never set is
canceled. Useful in GO scripts for closing data sets that may have been opened in previous
usage of the script.

Note that if a grid or axis from a netCDF file is used in the definition of a LET-defined
variable (e.g. LET my_X = X[g=sst[D=coads_climatology]]) that variable definition will be
invalidated when the data set is canceled (CANCEL DATA coads_climtology, in the preceding
example). There is a single exception to this behavior: netCDF files such as
climtological_axes.cdf, which define grids or axes that are not actually used by any variables.
These grids and axes will remain defined even after the data set, itself, has been canceled. They
may be deleted with explicit use of CANCEL GRID or CANCEL AXIS.

CANCEL EXPRESSION

Un-specifies the current context expression. Ferret's "action" commands can be issued without
an argument (e.g., yes? PLOT), in which case Ferret uses the current context expression.
This expression is either the argument of the most recent action command, or an expression set
explicitly with SET EXPRESSION.

yes? CANCEL EXPRESSION

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

CANCEL GRID

 CANCEL GRID forms the complement to DEFINE GRID It is also applicable to "persistent"
grids which are defined by netCDF files such as climatological_axes.cdf -- grids which are

not associated with any variables in the netCDF file, itself, and are not automatically deleted
when the data set is canceled.

Attempts to CANCEL GRID on a grid or axis which is used by a variable in a currently open
data set will be rejected with a message indicating the reason.

CANCEL LIST

/ALL /APPEND /FILE /FORMAT /HEADING /PRECISION

Toggles the effects of the SET LIST command. See command SET LIST (p. 377).

yes? CANCEL LIST[/qualifiers]

Command qualifiers for: CANCEL LIST

CANCEL LIST/ALL

Restores all aspects of the LIST command to their default behavior.

CANCEL LIST/APPEND

Resets the listed output to NOT append to existing file.

CANCEL LIST/FILE

Resets the listed output to automatic file naming.

CANCEL LIST/FORMAT

Resets the listed output to its default formatting.

CANCEL LIST/HEAD

Instructs listed output to omit the descriptive data header.

CANCEL LIST/PRECISION

Resets the precision of listed data to 4 significant digits.

Ref Sec2.3. CANCEL MEMORY

/ALL /PERMANENT /TEMPORARY

Clears data currently cached in memory.

yes? CANCEL MEMORY[/qualifier]

Use this command to save memory space—by clearing data as soon as it is no longer needed
virtual memory requirements can be reduced. This is especially useful for efficient batch
processing. Default is CANCEL MEMORY/TEMPORARY.

Example:

 To produce an animation using minimal virtual memory try:

 yes? REPEAT/T=lo:hi:delta GO min_mem_movie

 Where the file min_mem_movie.jnl contains

 CONTOUR/FRAME temp[Z=0] ! contour plot

 CANCEL MEMORY/ALL ! clear memory for next time step

Command qualifiers for CANCEL MEMORY:

CANCEL MEMORY/ALL

Clears all variables stored in memory.

CANCEL MEMORY/PERMANENT

Clears all "permanent" variables stored in memory (i.e., variables loaded into memory with
LOAD/PERMANENT).

CANCEL MEMORY/TEMPORARY (default)

Clears all non-permanent variables stored in memory.

CANCEL MODE

Sets the state of a mode to "canceled".

yes? CANCEL MODE mode_name

(See command SET MODE, p. 380, for descriptions of modes.)

Ref Sec2.4. CANCEL MOVIE

This command is unnecessary in Ferret version 3.1 and later; it is provided for compatibility
with older versions of Ferret. It restores the default movie file name (ferret.mgm) but is not
needed to conclude capturing graphics to a movie file.

yes? CANCEL MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

Ref Sec2.5. CANCEL SYMBOL

/ALL

Deletes a user-defined symbol (string variable) definition.

yes? CANCEL STRING[/qualifier] [symbol_name]

Command qualifiers for CANCEL SYMBOL:

CANCEL SYMBOL/ALL

Deletes all user-defined symbol definitions.

Examples:

yes? CANCEL SYMBOL my_x_label !eliminate my_x_label from the definitions
yes? CANCEL SYMBOL *x_label !remove all strings ending in x_label
yes? CANCEL SYMBOL/ALL !remove all user-defined symbols.

Ref Sec2.6. CANCEL REGION

/I/J/K/L /X/Y/Z/T /ALL

Cancels part or all of the current or named region.

yes? CANCEL REGION[/qualifier] [region_name]

Examples:

yes? CANCEL REGION !clear the current region

yes? CANCEL REGION/T !eliminate T from the current context

yes? CANCEL REGION reg1 !clear the region named "reg1"

Command qualifiers for CANCEL REGION:

CANCEL REGION/I /J /K /L /X /Y /Z /T

Eliminates I, J, K, L, X, Y, Z, or T axis information from current context or named region.

CANCEL REGION/ALL

Eliminates ALL stored region information (rarely used).

CANCEL VARIABLE

/ALL /DATASET

Deletes a user-defined variable definition.

yes? CANCEL VARIABLE[/qualifier] [var_name]

Command qualifiers for CANCEL VARIABLE:

CANCEL VARIABLE/ALL

Deletes all user-defined variable definitions.

Examples:

yes? CANCEL VARIABLE my_sst !eliminate my_sst from the definitions
yes? CANCEL VARIABLE *wind !delete all variables ending in wind
yes? CANCEL VARIABLE tau? !delete variables named tau plus one
character
yes? CANCEL VARIABLE/ALL !delete all user-defined defined variables

CANCEL VARIABLE/DATASET

Deletes user define variables associated with the named dataset, which were defined by a
DEFINE VARIABLE/DATASET command.

Ref Sec2.7. CANCEL VIEWPORT

Cancels a defined viewport or cancels use of viewports.

yes? CANCEL VIEWPORT view_name !un-define view_name

yes? CANCEL VIEWPORT !return to full window output

Ref Sec2.8. CANCEL WINDOW

/ALL

Removes graphics window(s) from the screen.

yes? CANCEL WINDOW n !or

yes? CANCEL WINDOW/ALL

Command qualifiers for CANCEL WINDOW:

CANCEL WINDOW/ALL

Removes all graphics windows.

Ref Sec3. CONTOUR

/I/J/K/L /X/Y/Z/T /D /FILL /FRAME /KEY /LEVELS /LINE /NOAXIS /NOKEY
/NOLABEL /OVERLAY /PALETTE /PATTERN /SIZE /SPACING /SIGDIG /PEN /SET_UP
 /TITLE /COLOR /TRANSPOSE /HLIMITS /VLIMITS /HLOG /VLOG /AXES
/HGRATICULE /VGRATICULE /GRATICULE

Produces a contour plot.

yes? CONTOUR[/qualifiers] [expression]

In a curvilinear coordinate system (map projections)

yes? CONTOUR[/qualifiers] expression, xcoords, ycoords (see p. 201)

Example:

yes? CONTOUR var1 !produce a contour plot of variable var1

yes? CONTOUR var1, xcoords, ycoords

 !produce a contour plot of variable var1

 ! using curvilinear coordinates

Parameters

Expressions may be any valid expression. See the chapter "Variables and Expressions",
 section "Expressions" (p. 65), for a definition of valid expressions. The expression will be
inferred from the current context if omitted from the command line.

Command qualifiers for CONTOUR:

CONTOUR/I/J/K/L /X/Y/Z/T /OVERLAY /SET_UP /FRAME /D /TRANPOSE /FILL
/LINE /NOLABEL /LEVELS /KEY /NOKEY /PALETTE /HLIMITS /VLIMITS /TITLE
/COLOR /NOAXES /PATTERN /SIZE /SPACING /SIGDIG /PEN /AXES

CONTOUR/I/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

CONTOUR/D=

Specifies the default data set to use when evaluating the expression being contoured.

CONTOUR/FILL (alias FILL)

Creates a color filled contour image.

CONTOUR/FRAME

Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 331) is more flexible
and we recommend its use rather than this qualifier.

CONTOUR/FILL/KEY

Displays a color key for the palette used in a color-filled contour plot. Only valid in
conjunction with /FILL (The key is displayed by default with CONTOUR/FILL or alias FILL).
 To control the color key position and labeling, see the command SHAKEY in the appendix,
"Ferret Enhancements to PPLUS" (p. 529).

CONTOUR/FILL/KEY=CONTINUOUS

Chooses a continous color key for the palette used in a color-filled contour plot, without lines

separating the colors. This option is particularly good for fill plots having many levels. Only
valid in conjunction with /FILL

CONTOUR/LEVELS

Specifies the contour levels or how the levels will be determined. If the /LEVELS qualifier is
omitted Ferret automatically selects reasonable contour levels.

See the chapter "Customizing Plots", section "Contouring" (p. 193) for examples and more
documentation on /LEVELS and color_thickness indices. See also the demonstration
"custom_contour_demo.jnl".

CONTOUR/LINE

Overlays contour lines on a color-filled plot. Valid only with /FILL (or as a qualifier to alias
FILL). When /LINE is specified the color key, by default, is omitted. Use FILL/LINE/KEY to
obtain both contour lines and a color key. The /SET_UP qualifier disables the action of /LINE.
When using /SET_UP, follow the PPL CONTOUR (or PPL FILL) command with a
CONTOUR/OVERLAY command to draw contour lines on the plot. In fact,
CONTOUR/OVERLAY offers all the functionality of FILL/LINE and gives better control
over the plot appearance.

CONTOUR/NOKEY

Turns off display of a color key for the palette used in a color-filled contour plot. Only valid in
conjunction with /FILL (or with alias FILL).

CONTOUR/NOAXIS

Suppresses all axis lines, tics and labeling so that no box appears surrounding the contour plot.
This is especially useful for map projection plots.

CONTOUR/NOLABELS

Suppresses all plot labels.

CONTOUR/OVERLAY

Causes the indicated expression to be overlaid on the existing plot.

Note (CONTOUR/OVERLAY with time axes):

A restriction in PPLUS requires that if time is an axis of the contour plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid contour fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis. See the section on overlaying with a time axis (p. 171).

CONTOUR/PALETTE=

Specifies a color palette (otherwise, the current default palette is used). Valid only with
CONTOUR/FILL (or as a qualifier to the alias FILL). The file suffix *.spk is not necessary
when specifying a palette. Try the Unix command % Fpalette '*' to see available
palettes. See command PALETTE (p. 344) for more information.

Example:

yes? CONTOUR/FILL/PALETTE=land_sea world_relief

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE (p. 344) command for further discussion.

CONTOUR/PATTERN=

Specifies a pattern file (otherwise, the current default pattern specification is used). Valid only
with CONTOUR/FILL (or as a qualifier to the alias FILL). The file suffix *.pat is not
necessary when specifying a pattern. Try the Unix command % Fpattern '*' to see available
patterns. See command PATTERN (p. 345) for more information.

CONTOUR/COLOR=

Sets line color (replaces the /PEN qualifier). The available color names are Black, Red, Green,
Blue, LightBlue, and , Purple, and White (not case sensitive), corresponding to the /PEN
values 1-6, respectively. (/COLOR also accepts numerical values.).

Example:

yes? CONTOUR/COLOR=red sst

CONTOUR/PEN=

Sets line style for contour lines (same arguments as PLOT/LINE=). Argument can be an
integer between 1 and 18; run GO line_samples to see the styles for color devices.

Example:

yes? CONTOUR/PEN=2 sst

CONTOUR/SIZE=

Controls the size of characters in the contour labels, using PLOT+ definition of "inches"
.Default is 0.8' See example under CONTOUR/SPACING below.

CONTOUR/SIGDIG=

Sets the number of significant digits for contour labels. Default is 2. See example under
CONTOUR/SPACING below.

CONTOUR/SPACING=

Sets spacing for contour lines, using PLOT+ definition of "inches". The default spacing is 5.0.
(See the CONSET command in the on-line PLOT+ Users Guide)

Example o f CONTOUR/SIZE/SIGDIG/SPACING

yes? LET my_field = SIN(X[x=1:6:.1])*COS(Y[y=1:6:0.1])
yes? CONTOUR/SIGDIG=1/SIZE=0.15/SPACING=3 my_field

Specifies contour labels with a single significant digit using characters of height 0.15 "inches"
at a nominal spacing of 3 "inches", consistent with the PLOT+ usage of "inches". (These are
the same units as in, say, "ppl axlen 8,6", to specify plot axes of lengths 8 and 6 inches for

horizontal and vertical axes, respectively.) Note that the PLOT+ CONPRE and CONPST
commands are also useful (see p. 495), giving control over the text font and color used in the
labels and adding units to the labels. For example, the commands

yes? PPL CONPRE @C002@CR
yes? PPL CONPST cm/sec

will transform the labels in the above CONTOUR example to red (002), Complex Roman font
with a units label of "cm/sec".

CONTOUR/SET_UP

Performs all the internal preparations required by program Ferret for contouring but does not
actually render output. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL CONTOUR command. This permits plot customizations that
are not possible with Ferret command qualifiers. See the chapter "Customizing Plots", section
"Contouring" (p. 193). Please note that /SET_UP disables the /LINE qualifier. When using
/SET_UP certain plotting states may have to be reset manually.

CONTOUR/TITLE=

Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression.

CONTOUR/TRANSPOSE

Causes the horizontal and vertical axes to be interchanged. By default the X and T axes of the
data are drawn horizontally on the plot and the Y and Z axes of the data are drawn vertically.
For Y-Z plots the Z data axis is vertical by default.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /HLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

CONTOUR/HLIMITS=

Specifies axis range and tic interval for the horizontal axis. Without this qualifier, Ferret
selects reasonable values.

yes? CONTOUR/HLIMITS=lo_val:hi_val[:increment] [expression]

The optional "increment" parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and "vertical"
interpretations in the presence of the /TRANSPOSE qualifier. Thus, the addition of
/TRANSPOSE to a plotting command mandates the interchange of "H" and "V" on the limits
qualifiers.

CONTOUR/VLIMITS=

Specifies the axis range and tic interval for the vertical axis. See /HLIMITS (above)

CONTOUR/XLIMITS=/YLIMITS=

Note: XLIMITS and YLIMITS have been deprecated. Please use HLIMITS and VLIMITS
instead.

CONTOUR/AXES[=top,bottom,left,right]

Turns plotting of individual axes off and on. This replaces the use of the "PPL AXSET"
command. The syntax is

 yes? CONTOUR/AXES[=top,bottom,left,right] var

where the arguments are 1 to turn the axis on and 0 to turn it off. For example:

yes? CONTOUR/AXES=0,1,1,0 sst ! Draws the bottom and left axes only

Note that contour plots with log axes can be drawn as explained in the FAQ, How can I make a
2D log (or log-log) plot?

CONTOUR/GRATICULE[=line specifiers]

http://ferret.pmel.noaa.gov/Ferret/FAQ/custom_plots/2D_log_plot.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/custom_plots/2D_log_plot.html

(Introduced in Ferret version 5.6) Turns on graticule lines for the horizontal and vertical axes.
 These are lines across the plot at the tic marks. /GRATICULE sets both horizontal and
vertical lines; to set each separately see /HGRATICULE and /VGRATICULE, below. The
syntax is

 yes? CONTOUR/GRATICULE[=line or dash,COLOR=,THICKNESS=] var

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to GRAT may be placed in parentheses

yes? CONTOUR/GRAT sst ! default graticules

yes? CONTOUR/GRAT=(LINE,COLOR=red,THIICK=3) sst

yes? CONTOUR/GRAT=(DASH,COLOR=lightblue) sst

yes? CONTOUR/FILL/GRAT=(DASH,COLOR=white) sst

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /GRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes.

yes? ppl axnmtc 2,2
yes? CONTOUR/GRAT="LARGE(COLOR=blue,thick),SMALL(COLOR=lightblue)" sst

CONTOUR/HGRATICULE[=line specifiers]/VGRATICULE[=line specifiers]

Turns on graticule lines and sets the line characteristics of the graticule for the horizontal or
vertical axis separately. You may specify only one of /HGRAT or /VGRAT if desired. These
are lines across the plot at the tic marks. The syntax is

 yes? CONTOUR/HGRATICULE[=line or dash,COLOR=,THICKNESS=]
/VGRATICULE=line or dash,COLOR=,THICKNESS=] var

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to HGRAT may be placed in parentheses

yes? CONTOUR/HGRAT/VGRAT sst !this is equivalent to PLOT/GRAT

yes? CONTOUR/HGRAT=(LINE,COLOR=red,THIICK=3)/VGRAT=(color=green) sst

yes? CONTOUR/HGRAT=(DASH,COLOR=lightblue) sst ! horizontal only

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /HGRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes.

yes? ppl axnmtc 2,2
yes? CONTOUR/HGRAT="LARGE(COLOR=blue,thick),SMALL(COLOR=lightblue)"
/VGRAT="LARGE(COLOR=blue,thick) sst

Ref Sec4. DEFINE

gratDefines a new alias, region, grid, axis, variable, or viewport.

Ref Sec4.1. DEFINE ALIAS

Defines an alias for a command. "ALIAS" is an alias for DEFINE ALIAS.

yes? DEFINE ALIAS NAME COMMAND

Example:

yes? DEFINE ALIAS SDF SHOW DATA/FULL

Ref Sec4.2. DEFINE AXIS

/X/Y/Z/T /DEPTH /FILE /FROM_DATA /MODULO /NAME /NPOINTS /T0 /UNITS
/EDGES /CALENDAR /BOUNDS

Defines an axis (axis name up to 16 characters).

yes? DEFINE AXIS[/qualifiers] axis_name
or
yes? DEFINE AXIS[/qualifiers] axis_name = expr

Example:

yes? DEFINE AXIS/X=140E:140W:.2 AX140
or
yes? DEFINE AXIS/X myaxis = {1, 5, 15, 35}

Note on DEFINE AXIS:

Axes which are "in use", because they are used by currently open data sets may now be
redefined using DEFINE AXIS.

In early versions of Ferret, attempting to redefine an in-use axis generated an error. This
feature is especially useful to correct the interpretation of erroneous files, or files which
exhibit minor incompatibilities with Ferret. Use this feature with caution as it can be used to
"fool" Ferret into an incorrect interpretation of a data file.

Command qualifiers for DEFINE AXIS:

DEFINE AXIS/X=/Y=/Z=/T=

Specifies the limits and point spacing of an axis.

yes? DEFINE AXIS/X=lo:hi:delta axis_name

The limits may be in longitude, latitude, or date format (for X, Y, or T axis, respectively) or
may be simple numbers. No units are assumed unless units are given explicitly with the
/UNITS qualifier.

Use /UNITS=degrees to obtain latitude or longitude axes. The X or Y qualifier determines
which orientation "degrees" refers to. If an X axis has units of degrees longitude it is
automatically marked as a modulo axis.

For T axis, the limits may be dates (dd-mmm-yyyy:hh:mm:ss) or may be time steps. The delta
increment is regarded as hours unless the /UNITS qualifier specifies otherwise. Note that time
axes may not extend beyond year 9999.

If the time limits are given as dates then this axis produces date-formatted output (unless
CANCEL MODE CALENDAR is issued). If the time limits are given as time steps then all
instances of this axis are labeled with time step values in the units specified with the /UNITS
qualifier.

Examples (evenly-spaced axes):

yes? DEFINE AXIS/X=140E:140W:.2 ax140

yes? DEFINE AXIS/Y=15S:25N:.5 axynew

yes? DEFINE AXIS/Z=0:5000:20/UNITS=CM/DEPTH axzcm

yes? DEFINE AXIS/T="7-NOV-1953":"23-AUG-1988:11:00":24 axtlife

yes? DEFINE AXIS/T=25:125:5/UNITS=minutes axt5min

DEFINE AXIS/CALENDAR=

Allows for non-Gregorian calendar axes. The calendars allowed are

calendar name number of days/year notes

GREGORIAN or STANDARD 365.2425 default calendar

JULIAN 365.25 with leap years

NOLEAP 365 no leap years

ALL_LEAP 366 366 days every year

360_DAY 360 each month is 30 days

The calendar definitions conform to the NetCDF conventions document for calendars. See
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html#cal These calendar
definitions are compatible with the Udunits standard (see
http://www.unidata.ucar.edu/packages/udunits/udunits.dat) which has slightly different naming
conventions.

The NetCDF conventions recommend that the calendar be specified by the attribute
time:calendar when there is a non-Gregorian calendar associated with a data set, i.e.

time:calendar=noleap

Ferret reads this attribute from a NetCDF file and assigns the designated calendar to the time
axis.

Example:

Define a calendar axis and regrid an existing variable to this axis:

yes? DEFINE AXIS/CALENDAR=JULIAN/T="15-JAN-1982":"15-DEC-
1985":30/UNITS=days tmodel yes? LET twind = uwnd[GT=tmodel@NRST]

When regridding from one calendar axis to another the length of a year is assumed to be
constant, therefore the regridding calculates a scale factor based on the length of a second in
each calendar, computed from the number of seconds per year for the calendars.

DEFINE AXIS/DEPTH

http://www.cgd.ucar.edu/cms/eaton/cf-metadata/CF-current.html#cal
http://www.unidata.ucar.edu/packages/udunits/udunits.dat

Specifies the Z axis to be a depth, positive downward, axis. A depth axis is indicated by a "(-)"
following its title in a SHOW GRID or SHOW AXIS command. Depth axes are notated by
"UD" (up-down) in the grid definition file, while normal vertical axes (such as an elevation
axis in meteorology) are notated by "DU" (down-up).

Example:

yes? DEFINE AXIS/Z=0:5000:20/DEPTH/UNITS=CM AXZDCM

DEFINE AXIS/EDGES

The /EDGES qualifier indicates that the coordinates provided refer to the edges or boundaries
between grid cells. When /EDGES is used, the coordinates of the grid points will be computed
at the midpoints between the indicated edges. When /EDGES is used in conjunction with
/FROM_DATA the number of grid points created will be equal to the number of coordinates
minus one, since the list of edges includes both the upper and lower edge of the axis. An
example of defining an axis by its edges is

yes? DEFINE AXIS/Z=0:5010:20/EDGES/DEPTH/UNITS=CM AXZDCM

A class of especially important uses for the /EDGES qualifier is to create custom calendar
axes. This example creates a true monthly axis, with axis cells beginning on the first of each
month:

yes? let month = MOD(l-1,12)+1
yes? let add_year = INT((l-1)/12)
yes? let tstep = DAYS1900(1980+add_year,month,1)
yes? define axis/T/units=days/t0=1-jan-1900/edges/NAME=truemonth
 tstep[l=1:`20*12+1`]

The following example shows the computation of a custom climatological average. Given, for
example, a multi-year time series of a daily measured variable, the climatological average of
the variable for two unequal time periods could be computed by creating an axis with two
points, using the FROM_DATA qualifier. The grid cells for these two points would extend
from 15-Mar to 27-May (about 73 days), and from 27-May to 15-Mar (about 292 days). The
actual dates on which the 2 points are located would be the midpoints of these two intervals, on
20-Apr and 20-Oct.

yes? DEFINE AXIS/t=1-jan-0001:1-jan-0002:1/unit=days/t0=1-jan-0000
tencoding
yes? LET tstep = t[gt=tencoding]
yes? LET start_date = tstep[t=15-mar-0001]
yes? LET end_date = tstep[t=27-may-0001]
yes? DEFINE AXIS/T/UNITS=days/T0=1-jan-0000/EDGES/MODULO
tax={`start_date,p=7`,`end_date,p=7`,`start_date+365.2425,p=7`}

yes? DEFINE GRID/T=tax taxgrid

yes? SHOW/L=1:2 grid taxgrid

 GRID TAXGRID
 name axis # pts start end
 normal X
 normal Y
 normal Z
 TAX TIME 2mi 20-APR 12:00 20-OCT 02:54

 L T BOX_SIZE TIME_STEP (DAYS)
 1> 20-APR 12:00:00 73 475.5
 2> 20-OCT 02:54:35 292.2425 658.1212

DEFINE AXIS/BOUNDS

Define an axis from lists of coordinates and bounds. (See the discussion of NetCDF bounds,
page). The upper bound of each cell must be the same as the lower bound of the next cell.The
coordinates must be inside (or may coincide with) the cell bounds. (Spaces are used here to
clarify the pairs of bounds, but are not necessary and do not affect the way the data is read.)

Examples:

 yes? DEF AXIS/X/BOUNDS xax = {1,2,5,6}, {0.5,1.5, 1.5,2.5, 2.5,5.5, 5.5,6.5}

 yes? DEF AXIS/Z/DEPTH/BOUNDS zax = \
 {0,20,50,75,120}, {0,10, 10,30, 30,60, 60,90, 90,150}

DEFINE AXIS/FILE=

Reads a gridfile for grid and axis definitions. The gridfile specified should be in the standard
TMAP gridfile format. There are several documents in $FER_DIR/doc regarding gridfiles and
TMAP format (e.g., "about_grid_files.txt").

yes? DEFINE AXIS/FILE=grid_file.grd

DEFINE AXIS/FROM_DATA

Used only in conjunction with /NAME to define an axis from any expression that Ferret can
evaluate.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name expr

(This is a mechanism to convert dependent variables into independent axis data.)

When defining an axis from a LET-defined variable or expression the condensed syntax (e.g.)

yes? DEFINE AXIS/X axname=expression

 replaces the older (still supported) syntax

yes? DEFINE AXIS/X/NAME=axname/FROM_DATA expression

Note that the values from which the axis is to be created must be in strictly increasing order. If
the coordinates are repeated, Ferret will "micro-adjust" the values by adding multiples of 1
millionth of the axis range to the repeated values. Ferret will issue an informative message if it
is micro-adjusting an axis.

Example (unevenly-spaced axis):

yes? DEFINE AXIS/X my_xaxis=pos[D=2]^0.5

defines each coordinate of the axis "my_xaxis" as the square root of variable "pos" from data
set 2.

DEFINE AXIS/MODULO[=len]

Specifies that the axis being defined be treated as modulo; that is, the first point will wrap
around and follow the last point (e.g., a longitude axis).The optional modulo length is the
length in axis units of the modulo repeat. If a length is specified, it may be longer than the axis
span, so that the axis is treated as a subspan modulo axis, and if no length is specified then the

default modulo length for the type of axis is used. See the sections on modulo axes and
subspan modulo axes for more information (p. 151 ff).

DEFINE AXIS/NAME=

Used only in conjunction with /FROM_DATA to specify the name of the axis to be defined.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name expr

DEFINE AXIS/NPOINTS=

Specifies the number of coordinate points on the axis being defined.

yes? DEFINE AXIS/Z=lo:hi/NPOINTS=n ax_name

This qualifier can be used instead of specifying Z=lo:hi:delta.

DEFINE AXIS/T0=

Specifies the date and time associated with the time step value 0.0

Example:

DEFINE AXIS/T="1-NOV-1980":"15-AUG-1988":72/T0="1-JAN-1800" TNEW

Note: The /T0 qualifier is optional; the underlying time step values are transparent to Ferret
users for most purposes. The default value is 15-JAN-1901.

DEFINE AXIS/UNITS=

Specifies the units of the axis being defined.

 A DEFINE AXIS command such as DEFINE AXIS/X=130E:80W:2 xax infers from the

formatting of the longitude coordinates the implied qualifier "/UNITS=degrees". Similar for
latitudes.

Example:

yes? DEFINE AXIS/Z=0:2000:100/UNITS=CM ZCM

Any string (up to 10 characters) is acceptable as a units string, but only the following units are
recognized and used when computing axis transformations:

cm (or centimeter) mm (or millimeter) day

km (or kilometer) mb (or millibar) mon

m (or meter, or metre) level yr (or year) (365 days)

deg (or lat or lon) layer gregorian_year (365.2425 days)

ft (or feet or foot) sec year360 (360 days)

in min year366 (366 days)

mile hour M2 cycles

dbar mbar

NOTES:

1) As of Ferret version 5.1 the definition of the unit "month" has been redefined to be exactly
1/12 of a climatological year. This change applies both to files that use "units=months" and to
the DEFINE VARIABLE command. The climatological month is the length of an average
month in the Gregorian calendar, including leap years -- 1/12 or 365.2485 days. Thus the
command

yes? DEFINE AXIS/T0=1-JAN-0000/T=0:12:1/EDGES/units=months/MODULO
month_reg

defines a climatological monthly axis which does not "drift" over time due to leap years. This
non-drift behavior can be observed using a commands like

yes? SHOW AXIS /l=1:12001:1200 month_reg

which will show every 100th January over 1000 years.

2) The units dbar and mbar are recognized by Ferret, however, no automatic conversion is
attempted between these and any other units.

TIP:

Ferret will convert recognized units of length to meters and recognized units of time to seconds
during transformations such as integration (@IIN and @DIN) and differentiation (@DDB,
@DDC, @DDF) (see "General Information about transformations," p. 97). Using this
characteristic it is always possible to query Ferret about the conversion factors from meters or
seconds by integrating a grid cell of width one on an axis of the units in question. For
example:

yes? ! query conversion factor to meters
yes? define axis/x=0:1:1/edges/units=feet xtest ! 1 point, cell width=1
unit
yes? let vx = 0*X[gx=xtest]+1 ! vx = 1
yes? list/prec=7 vx[x=@din]
 0*X[GX=XTEST]+1
 X (FEET): 0 to 1 (integrated)
 0.3048000

yes? ! query conversion factor to seconds
yes? define axis/t=0:1:1/edges/units=month ttest ! 1 point, cell width=1
unit
*** NOTE: /UNIT=MONTHS is ambiguous ... using 1/12 of 365 days.
yes? let vt = 0*T[gt=ttest]+1 ! vt = 1
yes? list/prec=7 vt[t=@din]
 0*T[GT=TTEST]+1
 T (MONTH): 0 to 1 (integrated)
 2628000.

Ref Sec4.3. DEFINE GRID

/X/Y/Z/T /FILE /LIKE

Defines a grid (name may be up to 16 characters).

yes? DEFINE GRID[/qualifiers] grid_name

Example:

yes? DEFINE GRID/LIKE=temp/T=my_t_axis my_grid

Command qualifiers for DEFINE GRID:

DEFINE GRID/X=/Y=/Z=/T=

Specifies what particular axis is to be the X, Y, Z, or T axis for this grid.

yes? DEFINE GRID/X=axname grid_name

The name axname may be the name of an axis, the name of a grid that uses the axis desired, or
the name of a variable for which the defining grid uses the axis desired.

For example,

yes? DEFINE GRID/X=U gx

will create a grid named gx which is one-dimensional—normal to Y, Z, and T.

Note: Many axes possess an orientation implicit in their units, especially latitude, longitude,
and time axes. The effects of using an axis in an inappropriate orientation, such as
/X=time_axis, are unpredictable.

DEFINE GRID/FILE=

Reads a gridfile for GRID and AXIS definitions. The gridfile specified should be in the
standard TMAP gridfile format. There are several documents in $FER_DIR/doc regarding
gridfiles and TMAP format (e.g., about_grid_files.txt).

Example:

yes? DEFINE GRID/FILE=new_grids.grd

DEFINE GRID/LIKE=

Specifies a particular grid (by name or by reference to a variable defined on that grid) to use as
a template to create a new grid.

yes? DEFINE GRID/LIKE=grid_or_variable_name grid_name

All axes of the grid being created will be identical to the axes of the "LIKE=" grid except those
explicitly changed with the /X, /Y, /Z, or /T qualifiers. The argument may be an expression.

Example:

yes? DEFINE GRID/LIKE=temp[D=2]/Z=ZAX gnew !temp from data set 2

Examples: DEFINE GRID

1) yes? DEFINE AXIS/T="1-JAN-1980":"31-DEC-1983":24 axday
yes? DEFINE GRID/LIKE=temp/T=axday gday
Define grid gday to be like the defining grid for temp but with a 4-year, daily-interval time
axis.

2) yes? DEFINE GRID/LIKE=temp[D=ba022]/T=sst[D=nmc] gnmc3d
Define grid gnmc3d like temp from data set ba022 but with the same time axis as sst from data
set nmc.

3) yes? DEFINE AXIS/X=140E:140W:.2 xnew
yes? DEFINE AXIS/Y=5S:5N:.2 ynew
yes? DEFINE AXIS/T="15-FEB-1982":"15-FEB-1984":48 tnew
yes? DEFINE GRID/X=xnew/Y=ynew/T=tnew gnew
Define grid gnew from new axes. The grid, gnew, will be normal (perpendicular) to Z.

Ref Sec4.4. DEFINE REGION

/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT /DEFAULT

 Defines or redefines a named region_name (first 4 characters are recognized).

yes? DEFINE REGION[/qualifiers] region_name

If the qualifier /DEFAULT is not given only those axes explicitly named will be stored. If the
qualifier /DEFAULT is given all axes will be stored.

Command qualifiers for DEFINE REGION:

DEFINE REGION/I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies region limits (=lo:hi or =val).

DEFINE REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=

Specifies a change in region relative to the current settings (=lo:hi or =val). See examples
below.

DEFINE REGION/DEFAULT

Saves all axes and transformations, not just those explicitly given. Commonly, a GO script
begins with "DEFINE REGION/DEFAULT save" and ends with "SET REGION save".

Examples: DEFINE REGION

1) yes? DEFINE REGION/DEFAULT save
Stores the current default region under the name "save". The region may be restored at a later
time by the command yes? SET REGION save.

2) yes? DEFINE REGION/X xonly
Stores the current default X axis limits, only, as region xonly.

3) yes? DEFINE REGION/DX=-5 xonly
Stores the current default X axis limits minus 5 as region xonly.

4) yes? DEFINE REGION/Y=20S:20N/Z yanz
Stores the given limits from the Y axis and the default Z axis limits.

5) yes? DEFINE REGION/DEFAULT/L=5 l5
Stores the current default region with the modification that L, the time step, is stored as 5.

6) yes? DEFINE REGION/DL=-1:+1 lp2
Stores an L region beginning 1 time step earlier and ending 1 time step later than the current
default region as region lp2.

Ref Sec4.5. DEFINE SYMBOL

Allows the user to define a string variable. Symbol names must begin with a letter and contain
only letters, digits, underscores, and dollar signs.

yes? DEFINE symbol symbol_name=string

Example:

yes? DEFINE symbol my_x_label = sample number

Ref Sec4.6. DEFINE VARIABLE

/D /QUIET /TITLE /UNITS /BAD=

Allows the user to define a variable from a valid algebraic expression. Note: LET is an alias
for DEFINE VARIABLE.

yes? DEFINE VARIABLE[/qualifiers] name=expression

Example:

yes? LET SPEED = U^2 + V^2

Parameters

The expression may be any valid expression. See the chapter "Variables and Expressions",
section "Expressions" (p. 65) for a definition of valid expressions.

Variable names

The name specified with DEFINE VARIABLE can be 1 to 128 characters in length—letters,
digits, $ and _, beginning with a letter. Pseudo-variable names (I, J, K, L, X, Y, Z, T , XBOX,
YBOX, ZBOX, TBOX) and operators (AND, OR, GT, GE, LT, LE, EQ, NE) are reserved and
cannot be used. It is not recommended to use function names such as SIN, EXP, LN or Ferret
operators and keywords likePLOT or AXIS as variable names. See the chapter "Variables and
Expressions" (p. 59) for recognized operators and functions, or use the commands SHOW
COMMAND and SHOW FUNCTION for a list of all commands and functions.

If the name defined is the same as a variable name in a data set, the user-defined variable is
used instead of the file variable. (Look for LET/D=d_set to control this behavior in future
Ferret versions.)

Examples:

1) yes? DEFINE VARIABLE sum = a+b
 or equivalently
yes? LET sum = a+b

2) yes? DEFINE VARIABLE/TITLE="velocity"/UNIT="m/sec"
pos[T=@DDC]*0.01
Defines velocity in m/sec from position, pos, in cm.

Command qualifiers for DEFINE VARIABLE:

DEFINE VARIABLE/BAD=value

Allows user to control the missing value of user-defined variables The specified value will be
used whenever the variable is LISTed (or SAVEd) to a file. Note that the missing value will
revert to its default (-1E34) when this variable is combined in further calculations.

Example:

yes? let/bad=3 gap_3 = I[I=1:5]
yes? list gap_3
 I[I=1:5]
1 / 1: 1.000
2 / 2: 2.000

3 / 3:
4 / 4: 4.000
5 / 5: 5.000
yes? let new_var = gap_3 + 5
yes? list new_var
 GAP_3 + 5
1 / 1: 6.00
2 / 2: 7.00
3 / 3:
4 / 4: 9.00
5 / 5: 10.00
yes? list/form=(1PG15.3) new_var
 GAP_3 + 5
 X: 0.5 to 5.5
 6.00
 7.00
 -1.000E+34
 9.00
 10.0

DEFINE VARIABLE/D=dataset

Restricts the scope of the variable name to the named data set. See further discussion in the
chapter "Variables and Expressions", section "Defining New Variables" (p. 125).

The qualifier "DATASET=" (LET/DATASET=...) allows you detailed control over the
multiple use of the same name.

If the name or number of a data set is supplied then the /dataset qualifier indicates that this
variable name is to be defined only in the specified data set. For example

yes? LET/dataset=coads_climatology V_geostrophic = SLP[X=@DDC]/(F*RHO)

Defines V_geostrophic only in data set coads_climatology. In other data sets the name
V_geostrophic may refer to file variables or it may be given different definitions or it may be
undefined. The data set may be specified either by name as in this example or by number as
shown by SHOW DATA. Note that variables defined using LET/dataset=[name_or_number]
will be shown in the SHOW DATA output for that data set as well as in SHOW
VARIABLES.

If the /dataset qualifier is applied without specifying a data set name then the interpretation
is different. In this case the named variable becomes a default definition -- one which applies
only if a data-set specific variable of the same name does not exist. For example, if the
command

yes? LET/DATASET sst = temp[Z=0]

is issued then sst[D=levitus_climatology] will evaluate to temp[D=levitus_climatology,Z=0]
because the variable sst does not exist in levitus_climatology, but sst[D=coads_climatology]
will refer to the file variable name sst within the coads_climatology data set.

LET/D is especially useful for editing data sets because it gives a ready way to distinguish
between the pre-edit and post-edit versions of the variable. In this example we edit the data set
etopo60, replacing a small rectangle in the Pacific Ocean.

Example:

! Do not use memory-cached data when editing.
! Always reread the most recent version from the file.

yes? SET MODE STUPID

! Save an exact copy of the original data for editing.
! We will call our edited file "new_etopo.cdf"
yes? SET DATA etopo60
yes? LET/D=etopo60 depth = rose
yes? SET VARIABLE/TITLE="edited etopo depth"/UNITS=meters depth
yes? SAVE/FILE=new_etopo.cdf depth
yes? USE new_etopo.cdf

 ! "rose[d=etopo60]" is the original.
 ! "depth[d=new_etopo]" is the edited version.
 ! Redefine "depth[d=etopo60]" as a tool for for selective editing.
yes? LET/D=etopo60 depth = rose[D=etopo60]-rose[D=etopo60] + correction

 ! An example edit: replace a small region with the value 500
yes? LET correction = 500
yes? SAVE/APPEND/FILE=new_etopo.cdf depth[D=etopo60,X=180:175w,Y=0:2n]
yes? PLOT/X=160e:160w/Y=1n rose[D=etopo60], depth[D=new_etopo]

DEFINE VARIABLE/QUIET

Suppresses message that, by default, tells you when you are redefining an existing variable.
This qualifier is useful in command files. (This is the default behavior starting with Ferret
version 5.2)

DEFINE VARIABLE/TITLE=

Specifies a title (in quotation marks) for the user-defined variable. This title will be used to
label plots and listings. If no title is specified the text of the expression will be used as the title.
(See also SET VARIABLE/TITLE, p. 393.)

DEFINE VARIABLE/UNITS=

Specifies the units (in quotation marks) of the variable being defined. (See command SET
VARIABLE/UNITS, p. 393.)

Ref Sec4.7. DEFINE VIEWPORT

/CLIP /ORIGIN /SIZE /TEXT /XLIMITS /YLIMITS /AXES

Defines a new viewport (a sub-rectangle of the graphics window).

yes? DEFINE VIEWPORT[/qualifiers] view_name

Issuing the command SET VIEWPORT is best thought of as entering "viewport mode." While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots are drawn in a
single viewport without the use of /OVERLAY the current plot will erase and replace the
previous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of "viewport mode" is canceled.

Example:

yes? DEFINE VIEWPORT/XLIMITS=0,.5/YLIMITS=0,.5 LL

Defines a viewport that will place graphical output into the lower left quarter of the screen, and
names the viewport "LL".

Command qualifiers for DEFINE VIEWPORT.

DEFINE VIEWPORT/XLIMITS=/YLIMITS=

Specifies the portion of the full window to be used.

yes? DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=y1,y2 view_name

The values of the limits must be in the range [0,1]; they refer to the portion of the window (of
height and length 1) which defines the viewport. Together, /XLIMITS and /YLIMITS replace
the CLIP, ORIGIN, and SIZE qualifiers in older Ferret versions.

DEFINE VIEWPORT/AXES

Specifies that user's limits are interpreted as the normalized positions of the plot axes rather
than of the entire viewport .

You can change PPL ORIGIN and PPL AXLEN only after SET VIEW is issued. Use the new
qualifier PLOT/NOYADJUST to avoid resetting the Y origin -- relevant during PLOT
commands that require extra room for a large key block under the axes or for viewports that lie
close to the bottom of the window where there may not be room below the Y origin. If
/NOYADJUST is specified, and the viewport is near the bottom of the window, the labelling at
the bottom of the plot will be lost.

yes? DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=y1,y2/AXES view_name

Example 1:

This example shows the effect of the /YADJUST qualifier on the plot command. Define two
viewports and plot; on the left the Y axis is adjusted automatically, on the right we specify
/NOADJUST and the labelling below the plot is not plotted.

yes? DEFINE VIEW/AXES/XLIM=0:0.5/YLIM=0:0.5 llax
yes? DEFINE VIEW/AXES/XLIM=0.5:1/YLIM=0:0.5 lrax
yes? SET VIEW llax
yes? PLOT/VS/LINE/I=1:314 i*cos(i/20),i*sin(i/20)

yes? SET VIEW lrax
yes? PLOT/VS/LINE/I=1:314/NOYADJUST i*cos(3+i/20),i*sin(3+i/20)

Example 2:

DEFINE VIEWPORT/AXES can be used to set guide lines on a plot

yes? CANCEL VIEW
yes? DEFINE VIEW/AXES allax

yes? SET VIEW allax
yes? PLOT/VS/LINE/HLIM=0:1/VLIM=0:1/NOLAB {0.5,0.5,,0,1},{0,1,,0.5,0.5}
yes? PLOT/VS/LINE/OVER/NOLAB {0.25,0.25,,0,1},{0,1,,0.25,0.25}
yes? PLOT/VS/LINE/OVER/NOLAB {0.75,0.75,,0,1},{0,1,,0.75,0.75}

yes? LABEL 0.26,0.95,-1,0,.2 @P2@AC<-At 0.25
yes? LABEL 0.76,0.95,-1,0,.2 @P3@AC<-At 0.75

yes? DEFINE VIEW /XLIM=0.25:0.75/YLIM=0.25:0.75/TEXT=1/AXES mid
yes? SET VIEW mid
yes? PLOT/VS/HLIM=-1:1/VLIM=-1:1/LINE/I=1:200 cos(i/15),sin(i/15)

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ref_viewaxes_a.gif

DEFINE VIEWPORT/TEXT=

Controls shrinkage (or expansion) of text.

yes? DEFINE VIEWPORT/TEXT=n view_name

In some cases text appearance may become unacceptable due to viewport size and aspect
specifications. A value of 1 produces text of the same size as in the full window; 0 < n < 1
shrinks the text; n > 1 enlarges text. Sensible values go up to about 2. When the qualifier
 /TEXT is omitted, Ferret computes a text size that is appropriate to the size of the viewport.

Note that /TEXT modifies the prominence of the text through manipulation of axis lengths
rather than through direct manipulation of the many text size specifications. A low value of
text prominence produces axes that are "long" (as seen with SHOW SYMBOLS, p. 209, or
PPL LIST XAXIS, p. 174), making the (fixed size) text appear less prominent.

Symbols are defined for all plots (new in Version 5.80 of Ferret), to give access to details of
the current viewport settings including the scale factor. These are set for user-defined
viewports and also for the pre-defined viewports

The symbols are: VP_WIDTH, VP_HEIGHT, VP_SCALE, VP_XLO, VP_XHI, VP_YLO,
VP_YHI, VP_RT_MARGIN, and VP_TOP_MARGIN. They are defined as follows. </P>

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ref_viewaxes_b.gif

When a viewport is defined by a command like:

yes? DEFINE VIEWPORT/XLIM=xlo:xyi/YLIM=ylo:yhi/TEXT=n my_viewport
yes? SET VIEW my_viewport

or,

yes? set viewport right ! a pre-defined viewport

The symbols VP_XLO, VP_XHI, VP_YLO, and VP_YHI are the arguments to /XLIM
and /YLIM.

VP_SCALE is related to the DEFINE VIEWPORT/TEXT qualifier, if used, or to the default
scaling if /TEXT is not used in the viewport definition. The viewport size is given by either
the value of the argument to DEF VIEW/TEXT=, or if no /TEXT qualifier is used, then the
viewport size is calculated as SQRT((xhi-xlo)) * (yhi-ylo)). The scale factor that is used on the
viewport width, height, and origin location is what we return in the symbol VP_SCALE:

VP_SCALE = 1.0 / SQRT(ABS(viewport_size))

Symbols VP_RT_MARGIN and VP_TOP_MARGIN are also defined, for convenience. These
are the space remaining on the page at the right and the top, beyond the ends of the x and y
axes; note tha tPPL$XORG and PPL$YORG are symbols that already give us the left and
bottom margin sizes.

All of the lengths given by PPL$XLEN, PPL$YLEN, PPL$XORG, PPL$YORG, VP_WIDTH,
and VP_HEIGHT are scaled by VP_SCALE. For example, showing only the relevant symbols
from the SHOW SYMBOLS output:

 yes? set view ur
 yes? show symbols

 PPL$XLEN = "5.012"
 PPL$YLEN = "3.423"
 PPL$XORG = "1.200"
 PPL$YORG = "1.400"

 PPL$WIDTH = "10.20"
 PPL$HEIGHT = "8.800"

 VP_WIDTH = "7.212"
 VP_HEIGHT = "6.223"

 VP_SCALE = "1.414"

 VP_RT_MARGIN = "1"
 VP_TOP_MARGIN = "1.4"
 VP_XLO = "0.5"
 VP_XHI = "1"
 VP_YLO = "0.5"
 VP_YHI = "1"

 yes? list (`(pplxlen)` + `(pplxorg)` +
`($vp_rt_margin)`)/`($vp_scale)`
 !-> list (5.012 + 1.2 + 1)/1.414
 VARIABLE : (5.012 + 1.2 + 1)/1.414
 5.100

 yes? list (`(pplylen)` + `(pplyorg)` +
`($vp_top_margin)`)/`($vp_scale)`
 !-> list (3.423 + 1.4 + 1.4)/1.414
 VARIABLE : (3.423 + 1.4 + 1.4)/1.414
 4.401

and, 5.1 is half of PPL$WIDTH, the width of the entire plot page, 4.4 is half of
PPLHEIGHT, the height of the plot page.

DEFINE VIEWPORT/CLIP=

This qualifier is obsolete; see XLIMITS= and /YLIMITS= (above). Specifies the location of
the upper right corner of the viewport.

DEFINE VIEWPORT/ORIGIN=

This qualifier is obsolete; see /XLIMITS= and /YLIMITS= (above). Specifies the location of
the lower left corner of the viewport.

DEFINE VIEWPORT/SIZE=

This qualifier is obsolete; see /XLIMITS and /YLIMITS (above). Specifies the scaling factor
to use relative to the size of the full window.

Ref Sec5. ELIF

The ELIF command is a part of Ferret's conditional command execution capability: IF-THEN-
ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description under the IF
command (p. 333) in this Commands Reference section.

Ref Sec6. ELSE

The ELSE command is a part of Ferret's conditional command execution capability: IF-THEN-
ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description under the IF
command (p. 333) in this Commands Reference section.

Ref Sec7. ENDIF

The ENDIF command is a part of Ferret's conditional command execution capability: IF-
THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description under
the IF command (p. 333) in this Commands Reference section.

Ref Sec8. EXIT

/LOOP/SCRIPT/PROMPT/PROGRAM/COMMAND

When issued interactively this command terminates program Ferret.

When executed within a command file, with no qualifiers, this command terminates the
execution of the command file and returns control to the level in Ferret that executed the file
(the user or another command file).

"QUIT" in a command file is an alias for EXIT without a qualifier. It will exit the current
script, or the program if you are at the Ferret prompt.

Command qualifiers for EXIT:

EXIT/LOOP

When executed from within a loop, Ferret will stop execution of that loop and return to the

level in Ferret which executed the loop.

EXIT/SCRIPT

When executed from within a script, this command will terminate theexecution of that script
and return control to the level in Ferret which executed the script (either the user or another
command file).

EXIT/PROMPT

When executed at any point, either in a script or loop, this command will immediately
terminate execution and Ferret will return to the"yes?" prompt and return control to the user.

EXIT/PROGRAM

EXIT/COMMAND_FILE

When executed from within a command file EXIT/COMMAND_FILE or EXIT/PROGRAM
forces an immediate exit from Ferret without returning control to the user or another command
file.

Ref Sec9. FILE

The FILE command is an alias for SET DATA/EZ (p.373). All qualifiers and restrictions are
identical to SET DATA/EZ

Example:

yes? FILE/VARIABLES="u,v" velocities.dat
 is equivalent to
yes? SET DATA/EZ/VARIABLES="u,v" velocities.dat

Ref Sec10. FILL

Alias for CONTOUR/FILL (p. 306), color-filled contour plot. All qualifiers and restrictions are
identical to CONTOUR/FILL.

Example:

yes? FILL/PAL=land_sea etopo60
 is equivalent to
yes? CONTOUR/FILL/PAL=land_sea etopo60

In a curvilinear coordinate system (map projections)

yes? FILL[/qualifiers] expression, xcoords, ycoords (see p. 201)

Ref Sec11. FRAME

/FORMAT /FILE

Saves the current graphics display image as a frame in the movie file initialized with the
command SET MOVIE. FRAME is also a qualifier for the "action" commands PLOT,
CONTOUR, POLYGON, SHADE, VECTOR and WIRE.

yes? CONTOUR my_var

yes? FRAME

Note that FRAME follows a command which creates an image.

FRAME/FORMAT=format controls the format of the file produced.

FRAME/FORMAT=HDF appends an HDF raster 8 drawn to the specified or implied input
file. The default format is HDF.

FRAME/FORMAT=gif creates a new gif file, any existing gif file with the specified or
implied name using relative version number or less. Note that in this mode of grabbing an
image Ferret creates a gif by requesting the image back from your screen (your X server). This
means that the X server normally has to be configured as pseudo-color. An alternative
approach which does not share this restriction is to start Ferret with "ferret -gif" (see p. 6)

FRAME/FILE=filename specifies the name of the output file. If /FORMAT is not specified
the output format is inferred from filename extensions of .hdf, .HDF, .gif, or .gif.

The maximum filename length, including path, that is allowable is 255 characters.

Ref Sec12. GO

/HELP

Executes a list of commands stored in a file.

yes? GO file_name

If no filename extension is specified a default of .jnl will be assumed. If the full path is
specified then the filename must be enclosed in double quotation marks.

The GO command can pass arguments to the script (tool) it executes. See the introductory
chapter, section "Writing GO Tools" (p. 23) for more information. Arguments to the GO
command may be separated by blanks or commas. To specify multiple words as a single
argument, enclose them in quotation marks. To specify an argument that is deliberately
omitted, use " " or two consecutive commas.

The response of Ferret to errors encountered during execution of the command file is
determined by mode IGNORE_ERRORS. (See command SET MODE, p. 380.)

The echoing of command file lines is controlled by mode VERIFY.

The GO command understands a special syntax called "relative version numbers." If a
filename is specified for the GO command which has a version value of zero or less its value is
interpreted as relative to the current highest version number. See the chapter “Computing
Environment”, section “Relative version numbers” (p. 242) for a discussion of relative version
numbers of files.

Note: The command SET MODE IGNORE_ERRORS is useful when rerunning past sessions
which may have errors.

/HELP

The command GO/HELP filename opens the named script with the Unix "more" command
and displays the first 20 lines of the named file. Use this command to quickly see the
documentation in a GO script.

Ref Sec13. HELP

On Unix systems interactive Ferret help is available from the command line with the
commands Fapropos, Fhelp, and Ftoc. If multiple windows are not available on your system
the ^Z key can be used to suspend the current Ferret session and access the help; the Unix
command "fg" will then restore the suspended session.

See the introductory chapter, section "Unix on-line help" (p. 30) for more information.

Ref Sec14. IF

Ferret provides an IF-THEN-ELSE syntax to allow conditional execution of commands.

In addition Ferret uses an "masking" IF-THEN-ELSE syntax for masking. These share
keywords but have different usage.

Ref Sec14.1. IF-THEN-ELSE conditional execution

This syntax may be used in two styles—single line and multi-line. In both the single and multi-
line styles the true or false of the IF condition is determined by case-insensitive recognition of
one of these options:

TRUE condition:

● a valid, non-zero numerical value
● TRUE
● T
● YES
● Y

FALSE condition:

● a zero value
● an invalid embedded expression (see next paragraph)

● FALSE
● F
● NO
● N
● BAD
● MISSING

Examples:

IF `i GT 5` THEN SAY "I is too big" ENDIF

writes message if the value of I is greater than 5

IF ($yes_or_no) THEN GO yes_script ELSE GO no_script

executes yes_script or no_script according to the value of the symbol yes_or_no

IF ($dset%|coads>TRUE|%) THEN GO my_plot

executes the script my_plot.jnl only if the symbol dset contains the exact string "coads"

IF `i LT 3` THEN
 GO option_1
ELIF `i LT 6` THEN
 GO option_2
ELSE
 GO option_3
ENDIF

uses the multi-line IF syntax to select among GO scripts.

Embedded (grave accent) expressions can be used in conjunction with the IF syntax. For
example, `3 GT 2` (Is three greater than 2?) evaluates to "1" (TRUE) and `3 LT 2` (Is three less
than 2?) evaluates to "0" (FALSE). If the result of a grave accent expression is invalid, for
example division by zero as in `1/0`, the string "bad" is, by default, generated. Thus invalid
expressions are regarded as FALSE.

Symbol substitution permits IF decisions to be based on text-based conditions. Suppose, for
example, the symbol ($DSET) contains a string: either coads or levitus. Then an IF condition
could test for coads using ($DSET%|coads>TRUE|%*>FALSE%).

IF ($DSET%|coads>TRUE|*>FALSE%) THEN
 GO cscript

ELSE
 GO lscript
ENDIF

The single line style allows IF-THEN-ELSE logic to be applied on a single line. For example,
to make a plot only when the surface (Z=0) temperature exceeds 22 degrees we might use

IF `TEMP[X=160W,Y=2N,Z=0] GT 22` THEN PLOT TEMP[X=160W,Y=2N]

The single line syntax may be any of the following:

 IF condition THEN clause_1
 IF condition THEN clause_1 ENDIF
 IF condition THEN clause_1 ELSE clause_2
 IF condition THEN clause_1 ELSE clause_2 ENDIF

Note that both ELSE and ENDIF are optional in the single line syntax. Groups of commands
enclosed in parentheses and separated by semicolons can be used as clause_1 or as clause_2.
There is no ELIF (pronounced "else if") statement in the single line syntax. However, IF
conditions can be nested as in

IF `i1 GT 5` THEN (IF `j1 LT 4` THEN go option_1 ELSE go option_2)

The multi-line style expands the IF capabilities by adding the ELIF statement. Multi-line IF
statement follows the pattern

IF condition_1 THEN

 clause_1_line_1

 clause_1_line_2

 ...

ELIF condition_2 THEN

 clause_2_line_1

 ...

ELIF condition_3 THEN

 ...

ELSE

 ...

ENDIF

Note that THEN is optional at the end of IF and ELIF statements but the ENDIF statement is
required to close the entire IF block. Single line IF statements may be included inside of multi-
line IF blocks.

Nested multi-line IF statements may fail, as the command parser attempts to evaluate all of the
statements. Thus this sequence does not work: the first condition `($event GE 0)` evaluates to
false, but Ferret still tries to parse the line `t1LT tlast`

nested.jnl:

DEFINE SYMBOL event = -1
let t1 = 9

IF `($event) GE 0` THEN
 LET tlast = 12
 IF `t1 LT tlast` THEN
 LET t2 = 8*tlast
 LIST t1, t2
 ENDIF
ENDIF

yes? go nested

 **ERROR: variable unknown or not in data set: TLAST

There are a number of workarounds: put the commands inside the IF into their own script, use
nested variable definitions, or write the inner IF clause as a single-line command, which will
be entirely skipped when the first IF condition fails:

DEFINE SYMBOL event = -1
LET t1 = 9

IF `($evnt) GE 0` THEN
(LET tlast = 12; IF `t1 LT tlast` THEN \
 LET t2 = tlast;\
 LIST t1,t2)
ENDIF

Ref Sec14.2. IF-THEN-ELSE logic for masking

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the IF-THEN
logic is simply (by example)

LET a = IF a1 GT b THEN a1 ELSE a2

This syntax is especially useful in creating masks that can be used to perform calculations over
regions of arbitrary shape. For example, we can compute the average air-sea temperature
difference in regions of high wind speed using this logic:

SET DATA coads_climatology
SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast_wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst
LET fast_tdiff = tdiff * fast_wind

We can also make compound IF-THEN statements. The parentheses are included here for
clarity, but are not necessary. Multi-line IF-THEN-ELSE constructs are not allowed in
embedded logic

LET a = IF (b GT c AND b LT d) THEN e

LET a = IF (b GT c OR b LT d) THEN e

LET a = IF (b GT c AND b LT d) THEN e ELSE q

The user may find it clearer to think of this logic as WHERE-THEN-ELSE to aviod confusion
with the IF used to control conditional execution of commands.

Ref Sec15. LABEL

/NOUSER

Places a label on the current plot; alias for PPL %LABEL. %LABEL is one of PPLUS's
primitive plot commands. It places a label on the plot immediately after being issued (rather
than deferring placement). PPLUS does not assign numbers to labels created with LABEL, so

they cannot be manipulated as movable labels. The label can also be placed on the plot using
the mouse to point and click (see the chapter "Customizing Plots", section "Positioning labels
using the mouse pointer," p. 179).

yes? LABEL xpos, ypos, center, angle, size text

xpos, ypos position in user units (world coordinates)

center -1 left justification (the default)

 0 centered

 1 right justification

angle angle in degrees, 0 degrees at 3 o'clock (default 0)

size size of text in inches (default 0.12)

See the chapter "Customizing Plots", section "Labels" (p. 173) for examples.

Command qualifiers for LABEL:

LABEL/NOUSER

Locates labels in inches instead of user units (xpos and ypos are specified in inches rather than
in world coordinates).

Ref Sec16. LET

The LET command is an alias for DEFINE VARIABLE (p.322). All qualifiers and restrictions
are identical to DEFINE VARIABLE.

Example:

yes? LET A = B
 is equivalent to
yes? DEFINE VARIABLE A = B

Ref Sec17. LIST

/I/J/K/L /X/Y/Z/T /D /ILIMITS /JLIMITS /KLIMITS /LLIMITS /XLIMITS /YLIMITS
/ZLIMITS /TLIMIT /APPEND /FILE /FORMAT /HEADING /NOHEAD /TITLE /ORDER
/RIGID /PRECISION /CLOBBER /SINGLE /QUIET /WIDTH /EDGES /BOUNDS

Produces a listing of the indicated data.

LIST[/qualifiers] [expression_1 , expression_2 , ...]

Example:

yes? LIST/Z=10 u , v , u^2 + v^2

Lists the 3 quantities specified using the current default data set and region (at depth 10).

Parameters

Expressions may be any valid expression. See the chapter "Variables and Expressions", section
"Expressions" (p. 65) for a definition of valid expressions. If multiple variables or expressions
are specified they may be listed together in columns or in sequence depending on the /SINGLY
qualifier. The expression(s) will be inferred from the current context if omitted from the
command line.

If multiple expressions are given on the command line and /SINGLY is not specified, then the
expressions must be conformable. See the chapter "Variables and Expressions", section "Multi-
dimensional expressions" (p. 67) for a definition of conformable expressions. Degenerate or
single point axis limits will be promoted up (values repeated) as needed.

Example:

yes? LIST/I=1:3/J=1:2 i+j, i

Command qualifiers for LIST:

LIST/I= /J= /K= /L=/X= /Y= /Z= /T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression(s) being listed.

LIST/ILIMITS=/JLIMITS=/KLIMITS=/LLIMITS=

Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression's limits it is possible to
/APPEND data later. (See the chapter "Converting to NetCDF", section "Simple Conversions
Using Ferret," p. 245, ex. 4).

LIST/XLIMITS=/YLIMITS=/ZLIMITS=/TLIMITS=

Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression's limits it is possible to
/APPEND data later. (See the chapter "Converting to NetCDF", section "Simple Conversions
Using Ferret," p. 245, ex. 4).

LIST/D=

Specifies the default data set to be used when evaluating the expression(s) being listed.

1LIST/APPEND

Use this qualifier together with the /FILE qualifier to indicate that the listed data should be
appended to a pre-existing file. If no file exists by the name indicated a new file is created.
This qualifier is not applicable to /FORMAT=GT. When used with /FORMAT=CDF it permits
any data in the file to be overwritten, new variables to be added to the file, and appending of
new indices along the T axis of the variables in the file. To append slabs of data in other
dimensions, see the example in the NetCDF chapter (p. 246). This qualifier overrides the
command CANCEL LIST/APPEND.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/_FN_3.htm

LIST/FILE [=file_name]

Names a file to receive the listed data. If /FILE is specified with no name then the default name
is used from the SET LIST/FILE command.

Example:

yes? LIST/FILE=my_file.dat sst[D=coads_climatology]

See command SET LIST (p. 377) for further information on automatic filename generation.

LIST/CLOBBER

Used with LIST/FILE. Indicates that any existing file with the name used is to be deleted,
before writing. If CLOBBER is not specified and the file exists, and error message is given.

Example:

yes? LIST/FILE=my_file.dat/CLOBBER sst[D=coads_climatology]

LIST/FORMAT=

Specifies an output format (=format_choice) for the data to be listed.

yes? SET LIST/FORMAT=format_choice
 or
yes? SET LIST/FORMAT (use format set by SET LIST/FORMAT)

Format choices:

FORTRAN format produces ASCII output

"UNFORMATTED" produces unformatted (binary) output using FORTRAN record
structure

"CDF" produces NetCDF format output

"GT" produces TMAP GT format

"STREAM" produces unstructured binary floating point (C-style)

"tab" produces tab-delimited output

"comma" produces comma-delimited output

This command has the same function as SET LIST/FORMAT except that it does not affect
future LIST commands. See command SET LIST/FORMAT (p. 378) for detailed
documentation.

Notes for LIST/FORMAT:

1) All output values, regardless of the /FORMAT designation, will be of type single
precision floating point. For FORTRAN output formats this means all numerical field
specifiers must be "F", "E", or "G".

2) For FORTRAN-formatted and UNFORMATTED (binary) output, the contents of a single
output "record" are determined by the /ORDER qualifier. For example, each record will be a
line of Y values for LIST/ORDER=YX. If /ORDER is omitted, the records will be the first
output axis of greater than unity length taken in the order X, Y, Z, then T. FORTRAN-
formatted output records may be further split by the usual rules of FORTRAN output
formatting.

3) FORTRAN formats must be enclosed in parentheses. If blanks are included in the format
it must be enclosed in quotation marks. Output strings are permitted in the format.

 Example:

yes? LIST/FORMAT=("The temperature is:", F6.3) sst[X=180, Y=0]

4) When FORTRAN formats are used, and more than one value per record is desired, the
/ORDER qualifier (p341) must be used, even if the variable is defined along only one axis.

 Example:

yes? LIST/FORMAT=(8F6.3)/ORDER=T sst[X=180, Y=0]

5) The default listing style includes labels for the rows and columns of the output. When a
FORTRAN format is specified, these labels are omitted.

6) On Unix systems the /FORMAT=UNFORMATTED specifier produces FORTRAN-style
variable-length records. On most implementations this means that a 4-byte field containing the
record length begins and ends each record of data.

7) The command alias SAVE is provided for the commonly used LIST/FORMAT=CDF.
NetCDF outputs are self-documenting, including grid definitions. The output files can be used
as input with the command USE—alias for SET DATA/FORMAT=CDF. See command
SAVE (p. 363) for further notes about NetCDF files.

8) For tab and comma foratted output, the coordinates are checked to see if the default format
gives enough precision to distinguish all of the coordinates. For fine grids, the coordinates are
output with enough digits to distinguish them. This may result in the coordinates not lining up
with the columns of the variable values.

LIST/BOUNDS

Only valid for NetCDF output (LIST/FORMAT=cdf). Outputs the data, including the bounds
attribute on all of its axes. The bounds attribute is used by default on all irregular axes, for
Ferret ersion 5.70 and later. See the comments under SAVE (p. 365).

LIST/EDGES

Only valid for NetCDF output (LIST/FORMAT=cdf). Outputs the data, having the edges
attribute on all of its axes.

LIST/HEAD

For ASCII data listings this command determines whether to precede the listing with a heading
describing data set, variable and region. This qualifier overrides the CANCEL LIST/HEAD
command. Starting with Ferret version 5.4 the default heading output of the list command is
expanded to include the filename, file path, and complete information on the subset of the data
that's listed. See the example under LIST/WIDTH= (p. 342)

LIST/HEADING[=ENHANCED]

For ASCII data listings this qualifier determines whether to precede the listing with a heading
that describes the data set, variable, and region. This qualifier overrides the CANCEL
LIST/HEAD command. When the argument /HEADING=ENHANCED is used a self-
documenting heading is provided that includes the axis coordinates.

For NetCDF output files (alias SAVE) the /HEADING=ENHANCED option causes the
NetCDF file structure to include extra coordinate information that describes how the particular
data subset being written fits within the broader coordinate system of the grid from which it is
extracted. When a NetCDF file with an enhanced heading is accessed by Ferret (using SET
DATA or USE) the index values will appear to be consistent with the parent data set.

LIST/NOHEAD

Does not precede listing with a heading describing data set, variable and region. This qualifier
overrides the SET LIST/HEAD command.

LIST/ORDER=

Specifies the order (ORDER=permutation) in which axes are to be laid out in the listing.

Examples:

yes? LIST/ORDER=XY sst !X varies fastest

yes? LIST/ORDER=YX sst !Y varies fastest

The "permutation" string may be any permutation of the letters X, Y, Z, and T. /ORDER is
applicable only to /FORMAT=unf and FORTRAN formats.

Note that a 1-dimensional list will, by default, place only one value per record. The /ORDER
qualifier can cause the 1-dimensional list to occur in a single record. For example,

LIST/I=1:5 I

will list as 5 records whereas

LIST/I=1:5 /ORDER=X I

will list 5 values on a single record.

LIST/PRECISION=#

Controls the digit precision of LIST output

Using the qualifier /PRECISION=#digits the output precision of the LIST command may be
easily controlled. This qualifier functions exactly as does the SET LIST/PRECISION=
command but it applies only to the current command.

LIST/QUIET

Using the qualifier /QUIET will prevent the message "LISTing to file XXXX.XXXX" from
being displayed.

LIST/RIGID

Valid only with /FORMAT=CDF. Indicates that Ferret should not create a NetCDF "record"
axis as the time axis for any of the variables listed with this command. Time axes are, instead,
of fixed length and the /APPEND qualifier is not usable to extend the listing.

LIST/SINGLY

This qualifier is relevant only when multiple expressions are specified in the LIST command.
When the /SINGLY qualifier is specified the entire listing of each expression including
(optional) heading and all data is completed before proceeding to the next expression.

By default the expressions are not listed singly—each line contains one value of each
expression. The qualifier has no effect if only a single expression is specified. If the /FILE
qualifier is specified to use automatic filename generation and /APPEND is not specified, then
each expression is listed to a separate file.

LIST/TITLE="title string"

Valid only with /FORMAT=CDF. Causes the global attribute "title" to be defined in a NetCDF
file, thereby setting its title.

LIST/WIDTH=columns

For multi-column output, controls the width of the listing on the page so the output line is no
longer than "columns" characters.

Example:

yes? USE coads_climatology
yes? LIST/L=1/WIDTH=50/Y=0:4 sst
 VARIABLE : SEA SURFACE TEMPERATURE (Deg C)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 180 by 2 points (LONGITUDE-LATITUDE)
 TIME : 16-JAN 06:00
 ... listing every 36th point
 21E 93E 165E 123W 51W
 1 37 73 109 145
3N / 47: 28.30 29.04 25.36 27.49
1N / 46: 28.29 29.12 24.82 27.49

yes? list/l=1/wid=70/y=0:4 sst
 VARIABLE : SEA SURFACE TEMPERATURE (Deg C)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 180 by 2 points (LONGITUDE-LATITUDE)
 TIME : 16-JAN 06:00
 ... listing every 23th point
 21E 67E 113E 159E 155W 109W 63W 17W
 1 24 47 70 93 116 139 162
3N / 47: 28.15 27.54 29.09 26.90 25.34 27.58
1N / 46: 28.18 29.24 26.49 24.90 27.05v

Ref Sec18. LOAD

/I/J/K/L /X/Y/Z/T /D /NAME /PERMANENT /TEMPORARY

Loads a variable or expression into memory.

yes? LOAD[/qualifiers] [expression_1 , expression_2 , ...]

Loading may speed execution of later commands that will require the loaded data. Often it is
helpful to LOAD a large region of data encompassing several small regions in which the
analysis will be pursued.

Load interacts with the current context exactly as other "action" commands CONTOUR,
PLOT, SHADE, VECTOR, LIST, etc. do.

Parameters

Expressions may be any valid expression. See the chapter "Variables and Expressions", section
"Expressions" (p. 65) for a definition of valid expressions. If multiple variables or expressions
are specified they are treated in sequence. The expression(s) will be inferred from the current
context if omitted from the command line.

Command qualifiers for LOAD:

LOAD/I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression(s) being loaded.

LOAD/D=

Specifies the default data set to be used when evaluating the expression(s) being loaded.

LOAD/NAME

Obsolete. Provided for compatibility with much older Ferret versions.

LOAD/PERMANENT

Data loaded with LOAD/PERMANENT are kept in memory until a LOAD/TEMPORARY
command is given that refers to the same data. See command LOAD/TEMPORARY (p. 344).
Note that this command may cause memory fragmentation. It should generally be given
immediately following CANCEL MEMORY and preferably is used only to load file variables
(as opposed to expressions).

LOAD/TEMPORARY (default)

Data loaded with LOAD or LOAD/TEMPORARY is brought into memory but may be
unloaded based on a priority scheme of least recent use when memory space is required.

Ref Sec19. MESSAGE

/CONTINUE /QUIET /JOURNAL /ERROR

Displays a message at the terminal.

yes? MESSAGE text

By default a carriage return is required from the keyboard for program execution to continue
(used to halt the execution of a command file). PAUSE is an alias for MESSAGE.

Command qualifiers for MESSAGE:

MESSAGE/CONTINUE

Continues program execution following the display of the message text without waiting for a
carriage return from the operator. SAY is an alias for MESSAGE/CONTINUE.

MESSAGE/JOURNAL

Writes the message to the journal file.

MESSAGE/ERROR

Writes the message to standard error.

MESSAGE/QUIET

Waits for a carriage return from the operator but does not supply a prompt for it.

Ref Sec20. PALETTE

Alias for PPL SHASET SPECTRUM=. Specifies or restores the default color.

yes? PALETTE pal_name

The argument is the name of a palette file. Many palettes are included in the Ferret
distribution. Try the Unix command "Fpalette '*'" to see a list of available palette files.

Some of the palettes are designed for particular needs. "centered.spk", for example, emphasizes
the contrast between positive and negative shade levels. "land_sea.spk" uses blue tones for
negative values and browns and greens for positive values, making it suitable for topography
displays.

Palette files end in the file suffix .spk, but the suffix is not necessary when specifying a palette.
Use GO try_palette pal_name to display a palette. The GO files "exact_color.jnl" and
"squeeze_colors.jnl" can be used to modify palettes. You can also create new palette files with
a text editor. See the chapter "Customizing Plots", section "Shade and fill colors" (p. 184) for
the format of a palette file.

PALETTE with no argument restores the default palette. When you use the qualifier
/PALETTE= in conjunction with /SET_UP, PPLUS makes the specified color spectrum the
new default palette, and all subsequent shaded or color-filled plots will use that palette as the
default. To restore the previous palette to the default, use PALETTE with no argument after
your customization.

To assist you in choosing a good palette for your plot, there is an FAQ, How can I find a good
color palette for my plot? at
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html
http://ferret.pmel.noaa.gov/Ferret/FAQ/graphics/colorpalettes.html

Ref Sec21. PATTERN

Alias for PPL PATSET PATTERN=. Specifies or restores the default pattern.

yes? PATTERN patt_name

The argument is the name of a pattern file. Many patterns are included in the Ferret
distribution. Try the Unix command "Fpattern '*'" to see a list of available pattern files.

Ferret has the capability to make color fill plots using solid color only, and also with colors
laid on in patterns .

The PATTERN command sets the patterns to be used in a plot generated with the SHADE,
FILL and POLYGON commands. It is similar to the PALETTE command, which sets colors,
but the PALETTE and PATTERN commands act independently.

When Ferret is started up, only one pattern is set, SOLID. The SOLID pattern is equivalent to
not using any pattern, and SHADE, FILL and POLYGON fill their cells with solid color.

Pattern files end in the file suffix .pat, but use of the suffix is not necessary when specifying a
pattern. Use GO show_pattern patt_name to display the patterns specified in a pattern
file. GO show_all_patterns draws a plot showing all the available pattern files and their
names. Notice that patterns can be used with a single color, or multiple colors, depending
entirely on the PALETTE specification.

A pattern file may specify one or more patterns. If there are fewer patterns specified in a
pattern file than there are levels in a particular plot, the patterns will be repeated.

Ref Sec22. PAUSE

Alias for MESSAGE (p. 344)

Ref Sec23. PLOT

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/squares_color.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/squares_patterns.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/squares_patterns.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/show_patterns.gif

/I/J/K/L /X/Y/Z/T /OVERLAY/ SET_UP /FRAME /D/ TRANPOSE/ VS/ SYMBOL/
NOLABEL /LINE /COLOR /THICKNES /SIZE /HLIMITS /VLIMITS /TITLE /STEP
/NOAXES /DASH /NOYADJUS /AXES /HLOG /VLOG /NOKEY

Produces a line plot.

yes? PLOT[/qualifiers] [expression_1 , expression_2 , ...]

The indicated expression(s) must represent a line (not a plane) of data (PLOT/VS is an
exception). Unless the /VS qualifier is used, the independent variable is the underlying
coordinate axis for this line of data.

Example:

yes? PLOT/l=1:100 sst

produces a time series plot of the first 100 points of sst.

Parameters

The argument(s) for PLOT specify the variable or expression to be plotted.

When the /VS qualifier is used the indicated expressions may have any geometry in 4D space
but they must match in the total number of points in each expression. The points are
 associated in the order of their underlying axes. When the /VS qualifier is not used the
indicated expression(s) must describe a line (not a plane) of data.

The expression(s) are inferred from the current context if omitted from the command line—i.e.,
if no expression is given then the argument most recently given is used, or the default
expression may be explicitly set with SET EXPRESSION.

When Ferret plots multiple data lines simultaneously, PPLUS automatically cycles through pen
colors and symbols, creating up to 26 distinct line types. Try GO line_samples to see samples
of these styles.

Command qualifiers for PLOT:

PLOT/I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression(s) being plotted.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/line_samples.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/line_samples.gif

PLOT/D=

Specifies the default data set to be used when evaluating the expression(s) being plotted.

PLOT/FRAME

Causes the graphic image produced to be captured as an animation frame and written to the
movie file specified by SET MOVIE. In general the FRAME command (p. 331) is more
flexible and we recommend its use rather than this qualifier.

PLOT/COLOR=/THICKNESS=

Simple syntax for line plots. For line plots it is possible with these qualifiers to control line
thickness and color with commands such as

yes? PLOT/COLOR=blue/THICK=2 I[i=1:3]

This is equivalent to the (still supported) use of the /LINE qualifiers in

 yes? PLOT/LINE=10 I[i=1:3] ! 4(blue) + 6*(2-1)

The available color names are Black, Red, Green, Blue, LightBlue, Purple, and White (not case
sensitive), corresponding to the /LINE values 1-6, respectively. (/COLOR also accepts
numerical values.) The line thickness may be 1, 2, or 3 corresponding to pixel thickness on the
screen or corresponding to multiples of the default line thickness on hard copy. Note that
White is only available for THICKNESS=1 (the default thickness).

Prior to Ferret v5.80, /THICK with no accompanying /COLOR plotted all lines in black.
 Starting with v5.80 PLOT/THICK for plot lines overlaid on the same plot cycles through the
colors Black, Red, Green, Blue, LightBlue and Purple. PLOT//THICK alone produces six in
thickness 2 and six in thickness 3.

When plotting a number of lines together with PLOT/OVER/COLOR=/THICKNESS= the
default behavior is for symbols to be plotted starting with the seventh line plotted. To plot
lines only, add the /LINE qualifier.

PLOT/COLOR=/THICKNESS=/SYMBOL=/SIZE=
Simple syntax for plots using symbols. For symbol (scatter) plots (PLOT/VS or
PLOT/SYMBOL), control the color, size, and line thickness of the symbols with commands
such as:

yes? PLOT/COLOR=red/THICKNESS=2/SYMBOL=4/SIZE=0.2 I[i=1:5]

The available color names are Black, Red, Green, Blue, LightBlue, Purple, and White (not case
sensitive), corresponding to the /LINE values 1-6, respectively. (/COLOR also accepts
numerical values.) The line thickness may be 1, 2, or 3 corresponding to pixel thickness on the
screen or corresponding to multiples of the default line thickness on hard copy; note that White
is only available in the default THICKNESS=1. The /SIZE is given in units of "inches",
consistent with the PLOT+ usage of "inches". (These are the same units as in, say, "ppl axlen
8,6", to specify plot axes of lengths 8 and 6 inches for horizontal and vertical axes,
respectively.)

PLOT/DASH[=]

(New qalifier with version 5.4) Simple syntax control over the dash characteristics using the
same arguments as in the PPLUS "LINE" command: DOWN1, UP1, DOWN2, UP2, where
these are in inches. For simple dashes let DOWN1=DOWN2 and UP1=UP2. For alternating
long and short dashes, make DOWN2 longer or shorter. The parentheses are optional.

 Example:

yes? PLOT/DASH/I=1:100 sin(i/5)
yes? PLOT/OVER/DASH=(0.3,0.1,0.3,0.1)/COLOR=RED/THICK/I=1:100 sin(i/7)
yes? PLOT/OVER/DASH=(0.6,0.2,0.1,0.2)/COLOR=RED/THICK/I=1:100 sin(i/9)

PLOT/LINE[=]

The /LINE qualifier without =n causes the PLOT command to connect the plotted points with a
line regardless of the state of the /SYMBOLS qualifier.

For simpler specification of line characteristics see PLOT/COLOR=/THICKNESS=/DASH=
above (p. 347) . /LINE=n specifies a pre-defined line style. "n" is an integer between 1 and 18.
GO line_thickness draws samples of the available line styles. Line style "1" is always a
solid line in the foreground color (black or white). Other line styles are device dependent
(colors or dash patterns). For color devices, n=1–6 draws single-thickness lines each a different

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/line_thickness.gif

color. n=7–12 draws double-thick lines in the same color order, and n=13–18 draws triple-
thick lines. See the chapter "Customizing Plots", section "Text and line colors" (p. 181) for a
chart of the default colors.

If more than 18 different plot lines are drawn using PLOT var1, var2, ... or with PLOT/OVER,
then Ferret starts making symbols on the plots

PLOT/NOLABELS

Suppresses all plot labels.

PLOT/OVERLAY

Causes the indicated field(s) to be overlaid on the existing plot. This qualifier can also be used
to overlay lines or symbols on 2D plots (SHADE, CONTOUR, or VECTOR) provided the axis
scalings are appropriate.

PLOT/SET_UP

Performs all the internal preparations required by program Ferret for plotting but does not
actually render the plot. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL PLOT command. This makes possible certain customizations
that are not possible with Ferret command qualifiers. See the chapter "Customizing Plots" (p.
165).

PLOT/SYMBOL[=]

The /SYMBOL qualifier causes the PLOT command to mark each plotted point with a symbol.
If the /LINE qualifier is given too the symbols are also connected with a line; if /LINE is
omitted no connecting line is drawn.

Optionally, the symbol number may be explicitly specified as an integer value between 1 and
88. The integer refers to the PPLUS plot marker numbers (e.g., 1 for x, 3 for +, etc.). Type
"GO show_symbols" and "GO show_88_syms" at the Ferret prompt to see available symbols
and their reference numbers. The symbols are also documented on page 1 of the document

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/show_88_syms.gif
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/show_88_syms.gif

$FER_DIR/doc/pplus_fonts.ps. The PLOT MARK font can be accessed using the font code
@PM.

PLOT/SYMBOL=DOT
This command uses the smallest dot that can be represented on the display device. Note that
the dots may not show up well on all devices.

PLOT/TITLE=

Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s).

PLOT/TRANSPOSE

Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn
horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data
axis is vertical by default.

PLOT/VS

Specifies that the first expression given in the command line is to be used as the independent
 axis.

Example:

yes? PLOT/Y=20S:20N/X=180/T=27740:27741/Z=100/VS temp , salt

Produces a plot of salinity (vertical axis) against temperature (horizontal axis) along the
indicated range of latitudes and times. The plot will be labeled "salt"; the vertical (dependent)
variable is the one that determines the key. The qualifier /TRANSPOSE can be used in
conjunction with /VS to further manipulate the labeling and axis orientation.

PLOT/VS implies /SYMBOL by default to produce scatter plots. Use PLOT/VS/LINE to
produce a line plot, and PLOT/VS/DASH[=] to plot a dash line and optionally set its
characteristics.

PLOT/STEP[=CONNECTED]

PLOT/STEP give a plot style that is consistent with grid cell interpretation of data.This is
especially useful for time series to show the span of each time bin. /STEP=CONNECTED
draws a line segment between the steps.

PLOT/HLIMITS=

Specifies axis range and tic interval for the horizontal axis. Without this qualifier Ferret selects
a reasonable range.

yes? PLOT/HLIMITS=lo:hi:[increment] [expression(s)]

The optional "increment" parameter determines tic mark spacing on the axis. If the increment
is negative, the axis is reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and "vertical"
interpretations in the presence of the /TRANSPOSE qualifier. Thus, the addition of
/TRANSPOSE to a plotting command mandates the interchange of "H" and "V" on the limits
qualifiers.

PLOT/VLIMITS=

Specifies the axis range and tic interval for the vertical axis. See /HLIMITS (above).

yes? PLOT/VLIMITS=lo:hi:[increment] [expression(s)]

The optional "increment" parameter determines tic mark spacing on the axis. If the increment
is negative, the axis is reversed.

PLOT/AXES[=top,bottom,left,right]

 Turns plotting of individual axes off and on. This replaces the use of the "PPL AXSET"
command. The syntax is

yes? PLOT/AXES[=top,bottom,left,right] var

where the arguments are 1 to turn the axis on and 0 to turn it off. For example:

yes? PLOT/AXES=0,1,1,0 sst ! Draws the bottom and left axes only

PLOT/NOYADJUST

Avoid resetting the Y origin -- relevant during PLOT commands that require extra room for a
large key block under the axes or for viewports that lie close to the bottom of the window
where there may not be much room below the Y origin. See the examples for DEFINE
VIEWPORT/AXES (p. 327)PLOT/HLOG /VLOG

/VLOG sets a vertical log axis, /HLOG sets a horizontal log axis. If /VLIMITS or /HLIMITS is
specified, they should be in data units (not log10 axis units). If the axis is a depth axis, an
inverse log axis is drawn.

Note: Setting axtype with a PPLUS call before the plot call will not result in a log plot, though
setting axis type with PLOT/SET_UP still works as in previous versions.

new syntax:

yes? PLOT/VLOG/VLIMITS=10:1000 my_ fcn ! plots my_fcn on a log axis

Replaces older syntax. The following no longer produces a log plot. As of Version 5.4, the
PLOT command resets the status of the axes to linear.

yes? ppl axtype 1, 3
yes? PLOT/VLIMITS=1:3 my_fcn

These commands in the older PPL syntax duplicate the effect of the new /VLOG qualifier.

yes? PLOT/SET_UP/vlimits=1:3 my_fcn ! These commands duplicate the
yes? ppl axtype, 1, 3 ! effect of the new syntax.
yes? ppl plot

PLOT/XLIMITS= /YLIMITS=

Note: XLIMITS and YLIMITS have been deprecated. Please use HLIMITS and VLIMITS
instead.

PLOT/GRATICULE[=line specifiers]

(Introduced in Ferret version 5.6) Turns on graticule lines for the horizontal and vertical axes.
 These are lines across the plot at the tic marks. /GRATICULE sets both horizontal and
vertical lines; to set each separately see /HGRATICULE and /VGRATICULE, below. The
syntax is

 yes? PLOT/GRATICULE[=line or dash,COLOR=,THICKNESS=] var

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to GRAT may be placed in parentheses

yes? PLOT/GRAT/i=1:12 1./i ! default graticules

yes? PLOT/GRAT=(LINE,COLOR=red,THIICK=3) var

yes? PLOT/GRAT=(DASH,COLOR=lightblue) var

yes? PLOT/FILL/GRAT=(DASH,COLOR=white) var

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /GRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes and for logarithmic axes.

yes? DEFINE AXIS/Z zlog=EXP(k[k=1:10])
yes? LET fcn = k[gz=zlog]yes?

PLOT/VLOG/GRAT="LARGE(COLOR=red),SMALL(COLOR=lightblue)" fcn

PLOT/HGRATICULE[=line specifiers]/VGRATICULE[=line specifiers]

Turns on graticule lines and sets the line characteristics of the graticule for the horizontal or
vertical axis separately. You may specify only one of /HGRAT or /VGRAT if desired. These
are lines across the plot at the tic marks. The syntax is

 yes? PLOT/HGRATICULE[=line or dash,COLOR=,THICKNESS=]
/VGRATICULE=line or dash,COLOR=,THICKNESS=] var

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to HGRAT may be placed in parentheses

yes? PLOT/HGRAT/VGRAT var !this is equivalent to PLOT/GRAT

yes? PLOT/HGRAT=(LINE,COLOR=red,THIICK=3)/VGRAT=(color=green) var

yes? PLOT/HGRAT=(DASH,COLOR=lightblue) var ! horizontal only

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /HGRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes and for logarithmic axes.

yes? DEFINE AXIS/Z zlog=EXP(k[k=1:10])
yes? LET fcn = k[gz=zlog]yes?
PLOT/VLOG/HGR="LARGE(COLOR=red),SMALL(COLOR=lightblue)"/VGRAT fcn

PLOT/NOKEY

Turns off the automatically-generated key showing line types on plots with multiple lines.
 There are several scripts which will let you position your own keys in the plot window

Ref Sec24. POLYGON

/I/J/K/L /X/Y/Z/T /OVERLAY /SET_UP /FRAME/D /TRANSPOSE /COORD_AX
/SYMBOL /NOLABELS /LEVELS /LINE /COLOR /PALETTE /TITLE /THICKNESS
 /NOAXES /PATTERN /FILL /KEY /NOKEY /HLIMITS /VLIMITS

Produces a color-filled or line plot of polygons. By default a color key is drawn and lines are
not drawn.

POLYGON[/qualifiers] x-vertices, y-vertices [, values]

Example:

This is the first example in the script poly_vec_demo.jnl The scripts poly_vector.jnl and
mp_poly_vector.jnl make definitions to set up a polygon command to draw a vector field using
arrow-shaped polygons, optionally filled with a color representing another quantity. Here is a
wind field, colored according to Sea Level Pressure.

Parameters

The two x- and y- vertices parameters separately specify the x and y coordinates of the vertices
of the polygons to be plotted.

The values may be any valid expression. If a color-filled plot is specified, the numerical value
of the expression associated with each polygon determines the color of that polygon, as in
SHADE and FILL plots. See the chapter "Variables and Expressions", section "Expressions"
(p. 65) for a definition of valid expressions. If values are omitted the /FILL option is not
valid—only /LINE plots may be made.

The POLYGON command accepts single and multi-dimensional arguments.

● 1D FORM

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/Ref_polyarrows.gif

yes? POLYGON xpoly1D, ypoly1D, values

where if xpoly1D or ypoly1D contain missing values, those represent the end of one
polygon and the start of the next. The length of the values array must equal the number of
polygons in which case the X coordinate might ve visualized as

 x1,x1,x1,x1,BAD,x2,x2,x2,BAD,x3,x3,x3,x3,x3,x3,x3,x3,BAD,...

where the "1","2","3" refer to the successive polygons The script polymark.jnl makes a
polygon plot by generating the correct 1-D arrays from a set of x and y coordinates and a
polygon-shape specification. See polymark_demo for examples. polytube.jnl also makes use
of the polymark command to draw "Lagrangian" plots along a track using color fill.

● 2D FORM

yes? POLYGON xpoly2D, ypoly2D, values

where values must be 1-dimensional and its axis must match in size and orientation one of
the axes from the 2D arrays. This axis represents the list of successive polygons. The other
axis of the 2D coordinates is the coordinates within each polygon. In the default case the X
coordinate is the axis of the coordinates within polygons, and might be visualized as

 x1,x1,x1,x1,BAD,BAD,...
 x2,x2,x2,BAD,BAD,...
 x3,x3,x3,x3,x3,x3,x3,x3,BAD,BAD,...

(with each list of polygon coordinates along the first axis padded with BAD to become the
same length)

If the "values" argument is not given the coordinate axis may be specified using the
 /COORD_AX qualifier.

Example:

yes? LET XTRIANGLE = YSEQUENCE({-1,0,1})
yes? LET YTRIANGLE = YSEQUENCE({-1,1,-1})
yes? LET XPTS = 180+30*RANDU(I[i=1:10])

http://www.ferret.noaa.gov/Ferret/Demos/polymark_demo/polymark_demo.html
http://www.ferret.noaa.gov/Ferret/Demos/polytube_demo/polytube_demo.html

yes? LET YPTS = 30*RANDU(1+I[i=1:10])
yes? POLYGON XTRIANGLE+XPTS, YTRIANGLE+YPTS, I[I=1:10]

Command qualifiers for POLYGON:

POLYGON /I=/J=/K=/L=/X=/Y=/Z=/T=

Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

POLYGON/COORD_AX=

For the 2-dimensional version of POLYGON, if "values" is omitted or is a constant then there
is no information on which to determine which is the axis of the vertices within each polygon
and which is the axes of successive polygons. The qualifier /COORD_AX can be used to
specify which is the axis of successive polygons.

If COORD_AX is not specified, and values is unspecified or a constant, Ferret assumes that
/COORD-AX is the second axis of the 2-dimensional coordinate arrays and issues a message
to this effect.

POLYGON/D=

Specifies the default data set to be used when evaluating the expression being plotted.

POLY/FILL

Fills the polygons with colors according to the third argument, values. If the values argument is
 omitted the /FILL option is not valid—only /LINE plots may be made.

POLYGON/FRAME

Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 331) is more flexible

and we recommend its use rather than this qualifier.

POLYGON/KEY

Displays a color key for the palette used in the color-filled plot. By default a key is drawn
unless the /LINE or /NOKEY qualifier is specified. To control the color key position and
labeling, see the command SHAKEY in the appendix, "Ferret Enhancements to PPLUS" (p.
529).

POLYGON/LEVELS

Specifies the POLYGON levels or how the levels will be determined. If the /LEVELS qualifier
is omitted Ferret automatically selects reasonable POLYGON levels.

See the chapter "Customizing Plots", section "Contouring" (p. 193) for examples and more
documentation on /LEVELS.

POLYGON/LINE

Outlines polygons specified by x and y vertices on a POLYGON plot. When /LINE is
specified the color key is omitted unless specifically requested via /KEY. The line type is
controlled by the /COLOR= and /THICK= qualifiers

POLYGON/LINE/COLOR=/THICK=

Simple specification of outline characteristics f or polygon plots which specify an outline line
we control line thickness and color with commands such as

yes? POLYGON/LINE/COLOR=blue/THICK=2 {1,2,1}, {3,2,1}

This is equivalent to the (still supported) use of the /LINE qualifiers in

yes? POLYGON/LINE=10 {1,2,1}, {3,2,1} ! 4(blue) + 6*(2-1)

The available color names are Black, Red, Green, Blue, LightBlue, Purple, and White (not case
sensitive), corresponding to the /LINE values 1-6, respectively. (/COLOR also accepts
numerical values.) The line thickness may be 1, 2, or 3 corresponding to pixel thickness on the
screen or corresponding to multiples of the default line thickness on hard copy, however the
color White is only available in the default THICKNESS=1. The /DASH qualifier is not
available for the outlines of POLYGON but dashes can be drawn using

POLYGON x-vertices, y-vertices
PLOT/OVER/VS/DASH x-vertices, y-vertices

POLYGON/NOKEY

Suppresses the drawing of a color key for the palette used in the plot.

POLYGON/NOLABELS

Suppresses all plot labels.

POLYGON/OVERLAY

Causes the indicated POLYGON plot to be overlaid on the existing plot.

POLYGON/PALETTE=

Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix command
% Fpalette '*' to see available palettes. The file suffix *.spk is not necessary when
specifying a palette. See command PALETTE (p. 344) for more information.

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE command (p. 344) for further discussion.

POLYGON/PATTERN=

Specifies a pattern file (otherwise, a default SOLID pattern is used). Try the Unix command %
Fpattern '*' to see available pattern files. The file suffix *.pat is not necessary when
specifying a pattern file. See command PATTERN (p. 345) for more information.

POLYGON/SET_UP

Performs all the internal preparations required by program Ferret for a POLYGON plot but
does not actually render output. Then PPL commands can then be used to make changes to the
plot prior to producing output, to make customizations that are not possible with Ferret
command qualifiers. For this command, the syntax for producing the plot is different from the
other plot commands. Output is made with the PPL FILLPOL or PPL POLYGON command.
See the chapter "Customizing Plots" (p. 165).

Example:

yes? ! use the SHAKEY command with the second argument = 0,

yes? ! to place the colorkey at the top of the plot

yes? POLYGON/SET x_vertices, y_vertices, values

yes? PPL SHAKEY 1,0

yes? PPL FILLPOL !draws the plot (or use PPL POLYGON)

POLYGON/TITLE=

Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See the chapter
"Customizing Plots", section "Fonts" (p. 188).

yes? POLYGON/TITLE="title string" x-vertices, y-vertices, values

POLYGON/TRANSPOSE

Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn
horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data
axis is vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /HLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

POLYGON/HLIMITS=

Specifies the horizontal axis range and tic interval (otherwise, Ferret selects reasonable
values).

yes? POLYGON/HLIMITS=lo:hi:increment

The optional "increment" parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and "vertical"
interpretations in the presence of the /TRANSPOSE qualifier. Thus, the addition of
/TRANSPOSE to a plotting command mandates the interchange of "H" and "V" on the limits
qualifiers.

POLYGON/VLIMITS=

Specifies the vertical axis range and tic interval. See /HLIMITS (above)

POLYGON/XLIMITS= /YLIMITS=

Note: XLIMITS and YLIMITS have been deprecated. Please use HLIMITS and VLIMITS
instead.

POLYGON/HLOG /VLOG

For 1-D plots only. /VLOG sets a vertical log axis, /HLOG sets a horizontal log axis. If
/VLIMITS or /HLIMITS is specified, they should be in data units (not log10 axis units). If the
axis is a depth axis, an inverse log axis is drawn.

See the notes under PLOT/VLOG/HLOG (p. 350)

Example:

yes? POLYGON/VLOG/VLIMITS=1:1000 xpts, ypts, my_ fcn

POLYGON/AXES[=top,bottom,left,right]

Turns plotting of individual axes off and on. This replaces the use of the "PPL AXSET"
command. The syntax is

 yes? POLYGON/AXES[=top,bottom,left,right] x-vertices, y-vertices,
values

where the arguments are 1 to turn the axis on and 0 to turn it off. For example, this command
draws the bottom and left axes only

yes? POLYGON/AXES=0,1,1,0 x-vertices, y-vertices, values

POLYGON/GRATICULE[=line specifiers]

(Introduced in Ferret version 5.6) Turns on graticule lines for the horizontal and vertical axes.
 These are lines across the plot at the tic marks. /GRATICULE sets both horizontal and
vertical lines; to set each separately see /HGRATICULE and /VGRATICULE, below. The
syntax is

 yes? POLY/GRATICULE[=line or dash,COLOR=,THICKNESS=] x-vertices, y-
vertices, values

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to GRAT may be placed in parentheses

yes? POLY/GRAT x-vertices, y-vertices, values ! default settings

yes? POLY/GRAT=(LINE,COLOR=red,THIICK=3) x-vertices, y-vertices, values

yes? POLY/GRAT=(DASH,COLOR=lightblue) x-vertices, y-vertices, values

yes? POLY/FILL/GRAT=(DASH,COLOR=white) x-vertices, y-vertices, values

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /GRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics.

POLYGON/grat="small(color=red,dash),large(thick,color=green)" {1,2,1},
{2,1,0.5}

POLYGON/HGRATICULE[=line specifiers]/VGRATICULE[=line specifiers]

Turns on graticule lines and sets the line characteristics of the graticule for the horizontal or
vertical axis separately. You may specify only one of /HGRAT or /VGRAT if desired. These
are lines across the plot at the tic marks. The syntax is

 yes? POLYGON/HGRATICULE[=line or dash,COLOR=,THICKNESS=]
 /VGRATICULE[=line or dash,COLOR=,THICKNESS=] x-vertices, y-vertices,
values

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to HGRAT may be placed in parentheses

yes? POLYGON/HGRAT/VGRAT xpts, ypts !equivalent to POLY/GRAT

yes? PLOT/HGRAT=(LINE,COLOR=red,THIICK=3)/VGRAT=(color=green) xpts,ypts

yes? PLOT/HGRAT=(DASH,COLOR=lightblue) xpts, ypts! horizontal only

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /HGRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes and for logarithmic axes.

yes? POLY/HGRAT="small(color=red,dash),large(thick,color=red)"
/VGRAT="large(thick,color=white),small(dash,color=white)" xpts,ypts

Ref Sec25. PPLUS

/RESET

Invokes PPLUS ("PLOT PLUS" written by Don Denbo), to execute a command or
commands.

yes? PPLUS !(also PPL); invokes PPLUS
interactively
 or

yes? PPL pplus_command !executes a single PPLUS command
 or

yes? PPL/RESET !restores PPLUS to start-up defaults

Example:

yes? PPL CROSS 1 !reference line through zero

Executes the PPLUS command "CROSS" and immediately returns control to Ferret.

When PPLUS is invoked interactively the prompt is "PPL>" instead of the usual "yes?". The
EXIT command given at the "PPL>" prompt returns control to Ferret.

See the chapter "Customizing Plots" (p. 165) for more information on Ferret/PPLUS
interactions. A complete list of PPLUS commands is in PLOT PLUS for Ferret User's Guide.

Command Qualifiers for PPLUS:

PPLUS/RESET

Restores PPLUS to start-up settings.

Ref Sec26. QUERY

Non-operating command (no result) checks the value of arguments to a GO script. See p. 26
for examples.

Ref Sec27. QUIT

Alias for EXIT; also just Q. See p. 329

Ref Sec28. REPEAT

/I/J/K/L /X/Y/Z/T /RANGE= /NAME= /ANIMATE/LOOP=

Repeats a command or group of commands over a range of values along an axis.

yes? REPEAT/q=lo:hi[:increment] COMMAND

The units of lo, hi, and increment are the units of the underlying grid axis if the qualifier is X,

Y, Z, or T. The qualifiers I, J, K, or L advance the repeat loop by incrementing the indicated
index (the default index increment is 1). Use SHOW GRID to examine the axis units (if the
units are not displayed try CANCEL MODE LATITUDE, LONGITUDE, or CALENDAR as
appropriate). To run the loop from the highest value decreasing towards the lowest value,
specify increment to be less than zero. Any command or group of commands that can be
specified at the command line can also be given as an argument to REPEAT. If MODE
VERIFY is SET, the current loop index is displayed at the console as REPEAT executes. The
value of any symbols e.g. "($symbol)") that are used inside of REPEAT loops are re-translated
at each repetition of the loop.

Examples:

1) yes? REPEAT/L=1:240 CONTOUR/Y=30S:50N/X=130E:70W/LEV/FRAME
sst
Produces a 240-frame movie of sea surface temperature.

2) yes? REPEAT/Z=300:0:-30 GO compz
Executes the command file compz.jnl at Z=300, Z=270, ..., Z=0.

3) yes? REPEAT/L=1:250:5 (GO set_up; CONTOUR sst; FRAME)
Repeats three commands—execution of a GO script, CONTOUR, and FRAME—for each
timestep specified.

4) See also the examples in the section on Animations (p. 159)

Command qualifiers for REPEAT:

REPEAT/I=/J=/K=/L=/X=/Y=/Z=/T=

Repeats the requested command(s) for the specified range of axis subscripts (I, J, K, or L) or
axis coordinates (X, Y, Z, or T). Note that when T axis limits are specified as dates, the units
of increment are hours.

REPEAT/ANIMATE[/LOOP=]

The /ANIMATE qualifier creates an animation on the fly. In a Ferret session, display an
animation with the command,

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5_REPEAT

yes? REPEAT/ANIMATE[/LOOP=n]

to start an animation sequence. Given LOOP=n, the animation sequence will repeat n times.

Example:

yes? set data coads_climatology

yes? repeat/l=1:12/animate/loop=5 (shade sst; go fland)

For a general discussion of animations, see the chapter Animations and gif Images (p. 157)

 NOTE: In order to properly display on SGI's, it is necessary to have backing store enabled for
the Xserver.

REPEAT/RANGE=[/NAME=]

(Introduced in Ferret version 5.6) Repeats a command or group of commands over an arbitrary
range of values. /RANGE= may be used with /NAME= to give a name to the repeat counter.
 The syntax is:

yes? REPEAT/RANGE=LO:HI[:INC] ! for an unnamed loop counter

yes? REPEAT/RANGE=LO:HI[:INC]/NAME=string ! for a named loop counter

If INC is not specified the increment is 1. If LO is larger than HI and INC is negative, then the
loop is executed on decreasing values of the counter. If LO is larger than HI and INC is
positive, the loop is not executed (or if LO is less than HI and INC is negative, the loop is not

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5

executed). The syntax can be used to create nested loops, including nesting with REPEAT
 /I/J/K/L or /X/Y/Z/T commands.

 REPEAT/RANGE=LO:HI[:INC]/NAME=var assigns the name "var" to the repeat
counter so it may be used within the commands to be executed. After the REPEAT
terminates, this variable is undefined.

Examples:

Example 1) Factorial calculation with REPEAT/RANGE

yes? ! Factorial
yes? CANCEL MODE verify
yes? LET a = 0; LET f = 1

yes? REPEAT/RANGE=1:8 (LET a = `a+1`;LET f = `f*a`;\
 LIST/NOHEAD/FORMAT=(F3.0," factorial", F7.0) a, f)

 1. factorial 1.
 2. factorial 2.
 3. factorial 6.
 4. factorial 24.
 5. factorial 120.
 6. factorial 720.
 7. factorial 5040.
 8. factorial 40320.

Example 2) REPEAT/RANGE=/NAME= with a nested repeat. The first two commands are
not executed, their LO:HI:INC ranges indicate that no repeat is to be done.

yes? rep/range=3:7:-1/name=s (list s)

yes? rep/range=3:-3:3/name=s (list s)

yes? rep/range=3:-3:-3/name=s (rep/range=1:2/name=tt list s + sin(tt))

!-> REPEAT: S:3
!-> REPEAT: TT:1
 VARIABLE : S + SIN(TT)
 3.841
!-> REPEAT: TT:2
 VARIABLE : S + SIN(TT)
 3.909

!-> REPEAT: S:0
!-> REPEAT: TT:1
 VARIABLE : S + SIN(TT)
 0.8415
!-> REPEAT: TT:2
 VARIABLE : S + SIN(TT)
 0.9093

!-> REPEAT: S:-3
!-> REPEAT: TT:1
 VARIABLE : S + SIN(TT)
 -2.159
!-> REPEAT: TT:2
 VARIABLE : S + SIN(TT)
 -2.091

Example 3) The REPEAT/RANGE counter is unaffected by whether a dataset is open, or a
region has been set. Here we use the @MIN and @MAX transformations and the INT function
to set the minimum and maximum for the range counter, and plot the MAX function computed
using the range counter variable.

yes? USE levitus_climatology
yes? SET REGION/x=100:300/Y=0/Z=10
yes? PLOT temp

yes? LET r1 = INT(temp[X=@MIN]) + 1
yes? LET r2 = INT(temp[X=@MAX]) - 1

yes? REPEAT/RANGE=`r1`:`r2`:3/NAME=tt (PLOT/OVER MAX(temp,`tt`))
!-> rep/range=18:28:3/name=tt (plot/over max(var,`tt`))
!-> REPEAT: TT:18
!-> plot/over max(var,18)
!-> REPEAT: TT:21
!-> plot/over max(var,21)
!-> REPEAT: TT:24
!-> plot/over max(var,24)
!-> REPEAT: TT:27

 !-> plot/over max(var,27)

A word of caution about REPEAT/RANGE. If you find yourself using it to do regridding, or
compute integrals or averages, or if you are doing some operation to every element of a
variable along an axis, you might want to rethink whether you are unnecessarily complicating
your scripts by duplicating Ferret's capability to operate on entire grids or axes in a single
command.

Ref Sec29. SAVE

The SAVE command is an alias for LIST/FORMAT=CDF (p.339). All qualifiers and
restrictions are identical to LIST/FORMAT=CDF.

Example:

yes? SAVE temp, salt

 is identical to

yes? LIST/FORMAT=CDF temp, salt

Notes:

1) Gaps in NetCDF outputs are filled with the missing value flag of the variable being
written. (See the chapter "Variables and Expressions", section "Missing value flags," p. 64.) In
the example below, if "temp" and "salt" share the same time axis then the L=2:4 values of salt
will be so filled.

yes? SAVE/FILE=test.cdf temp[L=1:5], salt[L=1], salt[L=5]

2) Transformations that compress an axis to a point produce results that Ferret regards as
time-independent. Thus, this 12-month average:

yes? SAVE/FILE=annual.cdf sst[L=1:12@AVE]

creates a NetCDF file with no time axis. It would not be possible to append the average of the
next 12 months as the next time step of this file. (See p. 246 for examples on appending to
NetCDF files.) However, a time location can be inherited from another variable. In this
example, we inherit the time axis of "timestamp" in order to create a time axis in the NetCDF
file.

yes? DEFINE AXIS/T="1-JUL-1980":"1-JUL-1985":1/UNIT=year tannual

yes? DEFINE GRID/T=tannual gannual

yes? LET timestamp = T[G=gannual] * 0 !always 0

yes? LET sst_ave = sst[L=1:12@AVE] + timestamp

yes? SAVE/FILE=annual.cdf sst_ave[L=1]

yes? LET sst_ave = sst[L=13:24@AVE] + timestamp

yes? SAVE/FILE=annual.cdf/APPEND sst_ave[L=2]

.

. etc.

3) Background documentation about the definition and data set of origin for a variable are
saved in the "history" attribute of a variable when it is first saved in the NetCDF file. If the
definition of the variable is then changed, and more values are inserted into the file using
SAVE/APPEND, the modified definition will NOT be documented in the output file. If the
new definition changes the defining grid for the variable the results will be unpredictable.

4) If you have created a data file with variables that you DEFINE, you will need to cancel
those previous definitions of the variables before you USE the new data set. If you USE the
data file while the DEFINE VARIABLE definition still exists in Ferret then the one that you
defined is the one that you will see with LIST and other commands. Either CANCEL
VARIABLE, or QUIT and start a new Ferret session where you access your new data set.

. . .

yes? SAVE/FILE=annual.cdf/APPEND sst_ave[L=2]

. . .

yes? CANCEL VAR sst_ave

yes? USE annual.cdf

yes? SHOW DATA

5) Note that when writing NetCDF files Ferret, by default, does NOT include the
point_spacing attribute. This is because Ferret's default file characteristic is to be append-able,
with no guarantees that the appended time steps will be regularly spaced. For output files of
fixed length with regular time steps it is advisable to use the SAVE/RIGID qualifier. This
allows Ferret to include the point_spacing="even" attribute. If the files will be very large (too
large for the full time range to be in memory), then use the /RIGID/TLIMITS= qualifiers to

specify the full, ultimate fixed size and use SAVE/APPEND to insert data into the file
piecemeal.

 If a coordinate is irregular it is output to the NetCDF file with a bounds attribute (beginning
with Ferret v5.70). To require that all axes be written with bounds attributes, use the
/BOUNDS qualifier:

yes? SAVE/BOUNDS v1,v2

If the file has the bounds attribute for the record axis (files written with Ferret version 5.70 and
after include the bounds attribute for all irregular axes), then we can append further timesteps
to the file and keep the correct point spacing. If there is a gap between the last time in the
existing file and the first time being appended, Ferret adds a void point, consisting of missing
data, centered on the interval between the upper cell bound of the time axis in the file and the
lower cell bound of the new data being written.

Examples:

yes? USE climatological_axes
yes? LET v = L[GT=month_irreg] ! variable with an irregular axis
yes? SAVE/FILE=mnth.nc/L=1:4 v ! bounds attribute on time axis.

We will be able to append more time steps to the file.

yes? SAVE/APPEND/FILE=mnth.nc/L=5:6 v

If there is a gap between time steps in the file and the first time step being appended, Ferret
inserts a void point whose bounds are the upper bound of the last time in the file, and the lower
bound of the first time step being appended. Append steps 10:12 to the file, and then look at
the variable and its coordinates:

yes? SAVE/APPEND/FILE=mnth.nc/L=10:12 v
yes? CANCEL VAR v
 yes? USE mnth.nc
 yes? LIST v, TBOXLO[gt=v], TBOXHI[gt=v], TBOX[gt=v]

 DATA SET: ./mnth.nc
 TIME: 01-JAN 00:00 to 31-DEC 05:49
Column 1: V is L[GT=MONTH_IRREG]
Column 2: TBOXLO is TBOXLO (axis MONTH_IRREG1)
Column 3: TBOXHI is TBOXHI (axis MONTH_IRREG1)
Column 4: TBOX is TBOX (axis MONTH_IRREG1)
 V TBOXLO TBOXHI TBOX
16-JAN 12 / 1: 1.00 0.0 31.0 31.00

15-FEB 02 / 2: 2.00 31.0 59.2 28.24
15-MAR 17 / 3: 3.00 59.2 90.2 31.00
15-APR 05 / 4: 4.00 90.2 120.2 30.00
15-MAY 17 / 5: 5.00 120.2 151.2 31.00
15-JUN 05 / 6: 6.00 151.2 181.2 30.00
15-AUG 05 / 7: 181.2 273.2 92.00
15-OCT 17 / 8: 10.00 273.2 304.2 31.00
15-NOV 05 / 9: 11.00 304.2 334.2 30.00
15-DEC 17 / 10: 12.00 334.2 365.2 31.00

If appending data to a file which has a regular time axis and no bounds, if there is a gap
between the time steps in the file and those being appended, Ferret has always written an axis
which is irregular and which has large box sizes at the gap. Now, Ferret will issue a note
suggesting that bounds would define the time axis more accurately.

 yes? use coads_climatology ! Has a regular time axis
 yes? save/l=1:4/clobber/file=b.nc sst[x=180,y=0]
 yes? save/append/L=6:9/file=b.nc sst[x=180,y=0]
*** NOTE: Appending to NetCDF record axis which has no bounds attribute.
*** NOTE: This will result in incorrect box sizes on record axis: TIME
*** NOTE: Write the data initially with the /BOUNDS qualifier

Ref Sec30. SAY

Alias for MESSAGE/CONTINUE (p. 344)

Ref Sec31. SET

Sets features of the operating environment for program Ferret.

Generally, features may be toggled on and off with SET and CANCEL. Features affected by
SET may be examined with SHOW (see also CANCEL, p. 299, and SHOW, p. 401).

Ref Sec31.1. SET AXIS

/MODULO/DEPTH/CALENDAR/T0/UNITS

Set or resets attributes of an existing axis.

/DEPTH

Indicates that an axis is to be treated as a depth axis (graphics made with positive down).

yes? SET AXIS/DEPTH z_ax

/CALENDAR=

Resets the calendar definition for a time axis.The allowed calendars are GREGORIAN,
NOLEAP, JULIAN, 360_DAY, and ALL_LEAP. This qualifier is ignored if it is applied to a
non-time axis. Applying this qualifier does not change the coordinates of the axis, but only
their interpretation. For example, create an axis which is by default a Gregorian calendar axis,
containing a leap day. Then reset it to a NOLEAP calendar. The coordinate values are the
same but their interpretation as dates is changed.

yes? DEFINE AXIS/T=0:100:1/T0="1-JAN-2004 00:00:00"/UNITS=days tax
yes? LIST/L=58:62 T[GT=tax]
 VARIABLE : T
 axis TAX
 SUBSET : 5 points (TIME)
27-FEB-2004 00 / 58: 57.00
28-FEB-2004 00 / 59: 58.00
29-FEB-2004 00 / 60: 59.00
01-MAR-2004 00 / 61: 60.00
02-MAR-2004 00 / 62: 61.00

yes? SET AXIS/CALENDAR=noleap tax
yes? LIST/L=58:62 T[GT=tax]
 VARIABLE : T
 axis TAX
 SUBSET : 5 points (TIME)
 CALENDAR : NOLEAP
27-FEB-2004 00 / 58: 57.00
28-FEB-2004 00 / 59: 58.00
01-MAR-2004 00 / 60: 59.00
02-MAR-2004 00 / 61: 60.00
03-MAR-2004 00 / 62: 61.00

/MODULO[=LEN]

Indicates that an axis is to be treated as a modulo axis (the first point "wraps" and follows the
last point, as in a longitude axis). The optional modulo length is the length in axis units of the
modulo repeat. If a length is specified, it may be longer than the axis span, so that the axis is

treated as a subspan modulo axis. If it is not specified, the axis length is used as the modulo
length. See the sections on modulo axes and subspan modulo axes for more information (p.
151 ff).

yes? SET AXIS/MODULO x_ax
yes? SET AXIS/MODULO/len=365.2425 days_axis

/T0=

Sets, or resets, the time origin of a time axis.

yes? SET AXIS/T0="1-JAN-1990" t_ax

yes? SET AXIS/T0="15-MAR-1950 12:00:00" timeax

If the axis is not a time axis, this qualifier is ignored. Applying this qualifier does not change
the coordinates of the axis, but only their interpretation. If /T0 is applied to an axis that did
not previously have a time origin, the axis will become a calendar-formatted axis, with time
coordinates automatically translated into date/time strings on listings, and formatted time axes
on plots.

/UNITS=

Sets, or resets, the units of an axis.

yes? SET AXIS/UNITS=days t_ax

yes? SET AXIS/UNITS=meters xax

Applying this qualifier does not change the coordinates of the axis, but only their
interpretation. UNITS are expressed as a string and are converted according to the usual rules
for Ferret axes, see the description of units under DEFINE AXIS (p. 318)

Ref Sec31.2. SET DATA_SET

/EZ /VARIABLE /TITLE /FORMAT /GRID /SKIP /COLUMNS /SAVE /RESTORE /ORDER
/TYPE /SWAP /REGULART/DELIMITED

SET DATA/EZ /COLUMNS /FORMAT /GRID /SKIP /TITLE /VARIABLE

Specifies ASCII, binary, NetCDF, GT, or TS-formatted data set(s) to be analyzed.

1) ASCII or binary:

yes? SET DATA/EZ[/qualifiers] data_set1, data_set2, …

 or equivalently, with alias FILE:

yes? FILE[/qualifiers] data_set1, data_set2, ...

2) NetCDF:

yes? SET DATA/FORMAT=cdf NetCDF_file

 or equivalently, with alias USE

yes? USE NetCDF_file

 or for a NetCDF dataset on a DODS server,

yes? use "http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc"

3) GT or TS-formatted:

yes? SET DATA data_set1, data_set2, ...

In the case of GT or TS-formatted files, an extension of .des is assumed. A previously SET
data set can be SET by its reference number, as shown by SHOW DATA, rather than by
name.

If a Unix filename includes a path (with slashes) then the full path plus name must be enclosed
in double quotation marks.

yes? use "/home/mydirectory/mydata/new_salinity.cdf"

If the filename begins with a numeric character, Ferret does not recognize the file, but it can be

specified using the Unix pathname, e.g.

yes? use "./123"

or

yes? file/var=a "./45N_180W.dat"

Note: Maximum simultaneous data sets: 30 (as of Ferret ver. 5.41). Use CANCEL DATA if
the limit is reached.

Command qualifiers for SET DATA_SET:

SET DATA/FORMAT=

Specifies the format of the data set(s) being SET. Allowable values for "file_format" are "cdf",
"delimited", "free", "stream", "unformatted", or a FORTRAN format in quotation marks and
parentheses.

yes? SET DATA/FORMAT=file_format [data_set_name_or_number]

Valid arguments for /FORMAT=

1) SET DATA/FORMAT=free (default for SET DATA/EZ)
To use the format "free" a file must consist entirely of numerical data separated by commas,
blanks or tabs.

2) SET DATA/FORMAT=cdf
If SET DATA/FORMAT=cdf (alias USE) is used, the data file must be in CDF format. The
default filename extension is ".cdf", or ".nc"

 Example:

yes? SET DATA/FORMAT=CDF my_netcdf

 or equivalently,

yes? USE my_netcdf

See the chapter "Data Set Basics", section "NetCDF data, p. 34."

Command qualifiers for SET DATA_SET/FORMAT=CDF:

2SET DATA /FORMAT=CDF /ORDER=<permutation> /REGULART

The permutation argument contains information both about the order of the axes in the file and
the direction.

The order indicated through the /ORDER qualifier should always be exactly the reverse of the
order in which the dimensions of variables as revealed by the netCDF ncdump -h command are
declared. (This ambiguity reflects the linguistic difference between "C ordering" and
"FORTRAN ordering". The default X-Y-Z-T ordering used in the COARDS standard and in
Ferret documentation would be referred to as T-Z-Y-X ordering if we used C terminology.)

Thus, to USE a file in Ferret in which the data on disk transposes the X and Y axes we would
specify

USE/ORDER=YX my_file.nc

To use a file in which the data were laid down in XZ "slabs", such as might occur in model
outpus we would specify

USE/ORDER=XZYT my_model.nc

To indicate that the coordinates along a particular axis are reversed from the "right hand rule"
ordering, for example a Y axis which runs north to south (not uncommon in image data), we
would precede that axis by a minus sign. For example

USE/ORDER=X-Y my_flipped_images.nc

The minus sign should be applied to the axis position **after** transposition. Thus if a file
both transposed the XY axis ordering and used north-to-south ordering in latitude one would
access the file with

USE/ORDER=Y-X my_transposed_flipped_images.nc

NetCDF files, while in principle self-documenting, may be contain axis ambiguities. For
example, a file which is supposed to contain a time series, but lacks units on the coordinate
variable in the file may appear to be a line of data on the X axis. The /ORDER qualifier can be
used to resolve these ambiguities. For this example, one would initialize the file with the
command

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/_FN_4.htm

 USE/ORDER=T my_ambiguous_time_series.nc

Notes for USE/ORDER:

a) Note that specifying USE/ORDER=XYZT is not always equivalent to specifying default
ordering. For example, if a netCDF file contained variables on an XYT grid, the
/ORDER=XYZT specifaction would tell Ferret to interpret it as an XYZ grid.

b) Also note, the /ORDER qualifier will be ignored if either the file is not netCDF, or the file is
netCDF but has an "enhanced" header (see SAVE/HEADING=enhanced, p 341)

SET DATA/FORMAT=cdf/REGULART

Speeds initialization of large netCDF data sets with known regular time axes. When Ferret
initializes a netCDF file (the SET DATA/FORMAT=cdf command or the USE command
alias), it checks for the attribute point_spacing = "even" on the time axis. If found, Ferret
knows that the coordinates are evenly spaced and reads only the first and last coordinate on the
axis to obtain a complete description. If not found, Ferret must read the full list of coordinates --
a time-consuming procedure for very large files. After reading the coordinates, Ferret
determines if they are regular. The /REGULART qualifier instructs Ferret to treat the time axis
as regular regardless of the presence or absence of a point_spacing attribute in the file,
speeding up the initialization time on files lacking point_spacing, but known to be regular.

Note that when writing NetCDF files Ferret, by default, does NOT include the point_spacing
attribute. This is because Ferret's default file characteristic is to be append-able, with no
guarantees that the appended time steps will be regularly spaced. For output files of fixed
length with regular time steps it is advisable to use the SAVE/RIGID qualifier. This allows
Ferret to include the point_spacing="even" attribute. If the files will be very large (too large for
the full time range to be in memory), then use the /RIGID/TLIMITS= qualifiers to specify the
full, ultimate fixed size and use SAVE/APPEND to insert data into the file piecemeal.

If the file has the bounds attribute for the record axis (files written with Ferret version 5.70 and
after include the bounds attribute for all irregular axes), then we can append further timesteps
to the file and keep the correct point spacing. If there is a gap between the last time in the
existing file and the first time being appended, Ferret adds a void point, consisting of missing
data, centered on the interval between the upper cell bound of the time axis in the file and the
lower cell bound of the new data being written.

3) SET DATA/FORMAT=UNFORMATTED
To use the format "unformatted" the data must be floating point, binary, FORTRAN-style

records with all of the desired data beginning on 4-byte boundaries. This option expects 4
bytes of record length information at the beginning and again at the end of each record. The "-"
designator (/VARIABLES) can be used to skip over unwanted 4-byte quantities (variables) in
each record. See the chapter "Data Set Basics", section "Binary data" (p. 40).

4) SET DATA/FORMAT=FORTRAN format string
FORTRAN format specifications should be surrounded by parentheses and enclosed in
quotation marks. Integer format is not supported by Ferret; to read integer data use, for
instance, FILE/FORMAT=(f5.0). See also /FORMAT=DELIMITED for reading string data
or data with dates which have mixed string and numeric information (p. 372)

The format specified is for reading each record; it cannot be used to specify the total number of
values read. That is determined by the grid for the variables. The grid is by default an abstract
axis of length 20408, or it may be set explicitly using DEFINE AXIS, DEFINE GRID and SET
DATA/GRID= commands. (See p. 374)

 Example:

yes? SET DATA/EZ/FORMAT="(5X,F12.0)" my_data_set

 or equivalently,

yes? FILE/FORMAT="(5X,F12.0)" my_data_set

5) SET DATA/FORMAT=STREAM
/FORMAT=stream is used to indicate that a file contains either unstructured binary output
(typical of C program output) or fixed-length records suitable for direct access (all records of
equal length, no record length information embedded in the file). With caution it is also
possible to read FORTRAN variable-length record output. This sort of file is typically created
by "quick and dirty" FORTRAN code which uses the simplest FORTRAN OPEN statement
and outputs entire variables with a single WRITE statement.

This format specifier allows you to access any contiguous stretch of 4-byte values from the
file. The /SKIP=n qualifier specifies how many values should be skipped at the file start. The
/GRID=name qualifier specifies the grid onto which the data should be read and therefore the
number of values to be read from the file (the number of points in the grid). Note that an
attempt to read more data than the file contains, or to read record length information, will
result in a fatal FORTRAN error on UNIX systems and will crash the Ferret program.

For multiple variables, use the /COLUMNS=n specifier to specify how many 4-byte values
separate each variable in the file. Each variable is assumed to represent a contiguous stream of

values within the file and all variables are assumed to possess the same number of points. (A
"poor man's method" is to create multiple Unix soft links pointing to the same file and multiple
SET DATA/EZ commands to specify one variable from each link name.)

See the chapter "Data Set Basics", section "Binary data" (p. 40) for further discussion and
examples of binary types. Also see the section below under SET DATA/TYPE for a list of the
data types that may be read using SET DATA/FORMAT=STREAM (p. 375)

16) SET DATA/FORMAT=DELIMITED

SET DATA/FORMAT=DELIMITED[/DELIMITERS=][/TYPE=][/VAR=] filename

Initializes a file of mixed numerical, string, and date fields. If the data types are not specified
the file will be analyzed automatically to determine data types. Using delimited files, the
number of variables that can be read from a single file is increased from 20 to 100.

The alias COLUMNS stands for "SET DATA/FORMAT=DELIMITED"

 /DELIMITER - list of field delimiters. Default is tab or comma e.g. /DELIM="X,\t,\,".
 Special characters include

● \b - blank
● \t - tab
● \n - newline
● \nnn - decimal value from ASCII table

 /TYPE is the list of data types of the fields. Field types may be any of

● "-" - skipped
● NUMERIC
● TEXT
● LATITUDE - e.g. 87S or 21.5N (interpreted as negative or positive, respectively)
● LONGITUDE - e.g. 160W or 30E (interpreted as negative or positive, respectively)
● DATE - e.g. mm/dd/yy or mm/dd/yyyy or yyyy-mm-dd or yyyymmdd - value returned

is days
● from 1-jan-1900 (consistent with the DAYS1900 function)
● EURODATE - e.g. dd/mm/yy or dd/mm/yyyy or yyyy-mm-dd TIME - e.g. hh:mm or

hh:mm:ss.s/

See the section on delimited files in the Data Set Basics chapter (p. 49) for examples.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/_FN_5.htm

SET DATA/RESTORE

Restores the current default data set number that was saved with SET DATA/SAVE.

This is useful in creating GO files that perform their function and then restore Ferret to its
previous state.

SET DATA/SAVE

Saves the current default data set number so it can be restored with SET DATA/RESTORE.

This is useful in creating GO files that perform their function and then restore Ferret to its
previous state.

SET DATA/TITLE=

Associates a title with the data set.

yes? SET DATA/EZ/TITLE="title string" file_name
yes? USE/TITLE="pmel data set" "http://www.ferret.noaa.gov/cgi-bin/nph-
nc/data/coads_climatology.nc"

For EZ, NetCDF, or DODS datasets, set a title. This title appears on plotted outputs at the top
of the plot.

SET DATA/EZ

Accesses data from an ASCII or unformatted file that is not in a standardized format (TMAP
or NetCDF). The command FILE is an alias for SET DATA/EZ.

yes? SET DATA/EZ[/qualifiers] ASCII_or_binary_file

 or, equivalently,

yes? FILE[/qualifiers] ASCII_or_binary_file

Example:

yes? FILE/VARIABLE=my_var my_data.dat

See the chapter "Data Set Basics", section "ASCII data" (p. 44) for more information and
examples. Used on its own, SET DATA/EZ/VAR= uses a default axis length which may be
shorter than the size of your data. If this is the case, use DEFINE AXIS and DEFINE GRID
commands, and FILE/GRID= to read your data, as discussed in the "Data Set Basics" chapter.

Command qualifiers for SET DATA_SET/EZ:

SET DATA/EZ/COLUMNS=n

Specifies the number of columns in the EZ data file.

By default the number of columns is assumed to be equal to the number of variables (including
"-"'s) specified by the /VARIABLES qualifier.

SET DATA/GRID=

Specifies the defining grid for the data in the data set. The argument can be the name of a grid
or the name of a variable that is already defined on the desired grid.

Example:

yes? SET DATA/EZ/GRID=sst[D=coads] snoopy

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) is specified. See also the examples in the section Reading ASCII files (p. 45). By default
Ferret uses grid EZ, a line of up to 20480 points oriented along the X axis.

SET DATA/SKIP=n

Specifies the number of records to skip at the start of a data set before beginning to read the
data. By default, no records are skipped.

For ASCII files a "record" refers to a single line in the file (i.e., a newline character). If the
FORMAT statement contains slash characters the "data record" may be multiple lines; the
/SKIP qualifier is independent of this fact.

For FORTRAN-structured binary files the /SKIP argument refers to the number of binary
records to be skipped.

For unstructured (stream) binary files (e.g., output of a C program) the /SKIP argument refers

to the number of words (4-byte quantities) to skip before reading begins.

SET DATA/SWAP

Stream files only. Change the byte ordering of numbers read from the file; big-endian numbers
are converted to little-endian numbers and vice versa.

SET DATA/TYPE=

For ASCII delimited files, /TYPE specifies the type of each variable to be read (see p. 372).
For unstructured (stream) binary files (p. 372), /TYPE specifies the data type of a set of
variables in the file. For stream files, the available values and their corresponding types are:

Value FORTRAN C size in bytes

i1 INTEGER*1 char 1

i2 INTEGER*2 short 2

i4 INTEGER*4 int 4

r4 REAL*4 float 4

r8 REAL*8 double 8

yes? SET DATA/EZ/FORMAT=STREAM/TYPE=14,R4/VAR=V1,V2 foobar.dat

will read a file containing INTEGER*4 and REAL*4 numbers into the variables v1 and v2.

SET DATA/VARIABLES=

Names the variables of interest in the file. Default is v1.

yes? FILE/VARIABLES="var1,var2,..." file_name

Except in the case of /FORMAT=stream, Ferret assumes that successive values in the data file
represent successive variables. For example, if there are three variables in a file, the first value
represents the first variable, the second represents the second variable, the third the third
variable, and the fourth returns to representing the first variable. The maximum number of
variables allowed in a single free-formatted data set is 20. See SET
DATA/FORMAT=DELIMITED (p. 372) for reading from a delimited file.

Variable names may be 1 to 24 characters (letters, digits, $, and _) beginning with a letter. To
indicate a column is not of interest use "-" for its name.

Example: (the third column of data will be ignored)

yes? SET DATA/VARIABLES="temp,salt,-,u,v" ocean_file.dat

SET DATA/ORDER= (Ferret version 3.11)

Specifies the order (ORDER=permutation) in which axes are to be read.

Examples:

yes? FILE/ORDER=XY sst !X varies fastest

yes? LIST/ORDER=YX sst !Y varies fastest

The "permutation" string may be any permutation of the letters X, Y, Z, and T. If the
/format=stream qualifier is used, the string may also contain V (for variable). This allows
variables to be "interleaved."

Ref Sec31.3. SET EXPRESSION

Specifies the default context expression. When Ferret's "action" commands (PLOT,
CONTOUR, SHADE, VECTOR, WIRE, etc.) are issued with no argument, the default context

expression is used. This is the expression last used as argument to an action command, or it
may be set explicitly with SET EXPRESSION. See the chapter "Variables and Expressions",
section "Expressions" (p. 65) for a full list of action commands.

yes? SET EXPRESSION expr1 , expr2 , ...

Examples:

1) yes? SET EXPRESSION temp
Sets the current expression to "temp".

2) yes? SET EXPRESSION u , v , u^2 + v^2
Set the current expressions to "u , v , u^2 + v^2"

Ref Sec31.4. SET GRID

/RESTORE /SAVE

Specifies the default grid for abstract expressions. Type GO wire_frame_demo at the
Ferret prompt for an example of usage.

yes? SET GRID[/qualifier] [grid_or_variable_name]

Examples:

yes? SET GRID sst[D=coads]

yes? SET GRID ! use grid from last data accessed

See the chapter "Grids and Regions" (p. 129).

Command qualifiers for SET GRID:

SET GRID/RESTORE

Restores the current default grid last saved by SET GRID/SAVE. Useful together with SET
GRID/SAVE to create GO files that restore the state of Ferret when they conclude.

SET GRID/SAVE

Saves the current default grid to be restored later. Useful together with SET GRID/RESTORE
to create GO files that restore the state of Ferret when they conclude.

When using curvilinear data, call the script mp_grid varnam.jnl" to associate the grid with the
map region.

Example:

yes? use coads_climagoloty

yes? set region/x=40e:110e/y=60s:20s/L=6
yes? go mp_stereographic_north

yes? go mp_aspect

yes? go mp_grid

yes? shade/noaxes sst, x_page, y_page

Ref Sec31.5. SET LIST

/APPEND /FILE /FORMAT /HEADING /PRECISION

Uses SET LIST to specify the default characteristics of listed output.

yes? SET LIST/qualifiers

The state of the list command may be examined with SHOW LIST. See command CANCEL
LIST (p. 301) and LIST (p. 337).

Command qualifiers for SET LIST:

SET LIST/APPEND

Specifies that by default the listed output is to be appended to a pre-existing file. Cancel this
state with CANCEL LIST/APPEND.

SET LIST/FILE=

Specifies a default file for the output of the LIST command.

yes? SET LIST/FILE=filename

The filename specified in this way is a default only. It will be used by the command

yes? LIST/FILE variable

 but will be ignored in

yes? LIST/FILE=snoopy.dat variable

Ferret generates a filename based on the data set, variable, and region if the filename specified
is "AUTO". The resulting name is often quite long but may be shortened by following
"AUTO" with a minus sign and the name(s) of the axes to exclude from the filename.

Note: the region information is not used in automatic NetCDF output filenames.

Examples:

yes? SET LIST/FILE=AUTO

yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.X140W110WY2S2NL500.

yes? SET LIST/FILE=AUTO-XY

yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.L500.

SET LIST/FORMAT=

Specifies an output format for the LIST command. (When a FORTRAN format is specified the
row and column headings are omitted from the output.)

yes? SET LIST/FORMAT=option

yes? SET LIST/FORMAT !reactivate previous format

Options

FORTRAN format produces ASCII output

"UNFORMATTED" produces unformatted (binary) output

"CDF" produces NetCDF output

"GT" produces TMAP GT format

Examples:

1) yes? SET LIST/FORMAT=(1X,12F6.1)
Specifies a FORTRAN format (without row or column headings).

2) yes? SET LIST/FORMAT=UNFORMATTED
Specifies binary output. (FORTRAN variable record length record structure.)

Notes:

● When using GT format all variables named in a single LIST command will be put into a
single GT-formatted timestep.

● Very limited error checking will be done on FORTRAN formats.
● FORTRAN formats are reused as necessary to output full record.
● Latitude axes are listed south to north when /FORMAT is specified.

SET LIST/HEAD

Specifies that ASCII output is to be preceded by a heading that documents data set, variable,
and region. Cancel the heading with CANCEL LIST/HEAD.

SET LIST/PRECISION

Specifies the data precision (number of significant digits) of the output listings. This qualifier
has no effect when /FORMAT= is specified.

yes? SET LIST/PRECISION=#_of_digits

Ref Sec31.6. SET MEMORY

/SIZE

yes? SET MEMORY/SIZE=megawords

The command SET MEMORY provides control over how much "physical" memory Ferret can
use. (In reality the distinction between physical and virtual memory is invisible to Ferret. The
SET MEMORY command merely dictates how much memory Ferret can attempt to allocate
from the operating system.)

SET MEMORY controls only the size of Ferret's cache memory—memory used to hold
intermediate results from computations that are in progress and used to hold the results of past
file IO and computations for re-use. The default size of the memory cache is 6.4 megawords
(equivalently, 6.4×4=25.6 megabytes). Cache memory size can be set larger or smaller than
this figure.

Example:

yes? SET MEMORY/SIZE=8.2

Sets the size of Ferret's memory cache to 8.2 million (4-byte) words.

Notes:

● As a practical matter memory size should not normally be set larger than the physical
memory available on the system.

● The effect of SET MEMORY/SIZE= is identical to the "-memsize" qualifier on the
Ferret command line.

● See SET MODE DESPERATE (p. 382) and MEMORY USAGE (p. 237) in this users
guide for further instructions on setting the memory cache size appropriately.

● Using the SET MEMORY command automatically resets the value of SET MODE
DESPERATE to a default that is consistent with the memory size.

● The effects of SET MEMORY/SIZE last only for the current Ferret session. Exiting
Ferret and restarting will reset the memory cache to its default size.

● If memory is severely limited on a system Ferret's default memory cache size may be
too large to permit execution. In this case use the "-memsize" qualifier on the command
line to specify a smaller cache.

Ref Sec31.7. SET MODE

/LAST

Specifies special operating modes or states for program Ferret.

yes? SET MODE[/LAST] mode_name[:argument]

Mode Description
Default
State

ASCII_FONT imposes PPLUS ASCII font types on plot labels set

CALENDAR uses date strings for T axis (vs. time step values) set

DEPTH_LABEL uses "DEPTH" as Z axis label set

DESPERATE attempts calculations too large for memory canceled

DIAGNOSTIC turns on internal program diagnostic output canceled

GRATICULE sets drawing of graticule lines on all subsequent plots cancelled

GUI unsupported; used in GUI development

IGNORE_ERROR continues command file after errors canceled

INTERPOLATE automatically interpolates data between planes canceled

JOURNAL records keyboard commands in a journal file set

LATIT_LABEL uses "N" "S" notation for labeling latitudes set

LONG_LABEL uses "E" "W" notation for labeling longitudes set

METAFILE captures graphics in GKS metafiles canceled

PPLLIST listed output from PPLUS is directed to the named file canceled

REFRESH refreshes graphics on systems lacking "backing store" canceled

SEGMENT utilizes GKS segment storage set

STUPID controls cache hits in memory (diagnostic) canceled

VERIFY displays each command file line as it is executed set

WAIT waits for carriage return after each plot canceled

Command qualifiers for SET MODE:

SET MODE/LAST

Resets mode to its last state.

yes? SET MODE/LAST mode_name

Example: (a command file that will not alter Ferret modes)

yes? SET MODE IGNORE_ERRORS ! 1st line of command file

 .

 code which may encounter errors

 .

yes? SET MODE/LAST IGNORE_ERRORS ! last line of command file

Ref Sec31.7.1. SET MODE ASCII_FONT

The SET MODE ASCII_FONT command causes program Ferret to precede plot labels with
the PPLUS font descriptor "@AS" (ASCII SIMPLEX font). This assures that special
characters (e.g., underscores) are faithfully reproduced. For special plots it may be desirable to
use other fonts (e.g., to obtain subscripts). CANCEL MODE ASCII_FONT is for these cases.

 default state: set

Ref Sec31.7.2. SET MODE CALENDAR

SET MODE CALENDAR causes program Ferret to output times in date/time format (instead
of time axis time step values). This affects both plotted and listed output.

This mode accepts an optional argument specifying the degree of precision for the output date.
If the argument is omitted the precision is unchanged from its last value.

 default state: set (argument: minutes)

Arguments

SET MODE CALENDAR accepts the following arguments:

Argument Equivalent precision

SECONDS -6

MINUTES -5 (default)

HOURS -4

DAYS -3

MONTHS -2

YEARS -1

The argument is uniquely identified by the first two characters.

Example:

yes? SET MODE CALENDAR:DAYS

Causes times to be displayed in the format dd-mmm-yyyy.

When CALENDAR mode is canceled the "equivalent" in the table above determines the
precision of the time steps displayed exactly as in SET MODE LONGITUDE.

Ref Sec31.7.3. SET MODE DEPTH_LABEL

SET MODE DEPTH_LABEL causes Ferret to label Z coordinate information in the units of
the Z axis. This affects both plotted and listed output. This mode accepts an optional argument
specifying the degree of precision for the output. If the argument is omitted the precision is
unchanged from its last value.

yes? SET MODE DEPTH:argument

 default state: set (argument: -4)

Arguments

See SET MODE LONG (p. 386) for a detailed description of precision control.

Ref Sec31.7.4. SET MODE DESPERATE

Ferret checks the size of the component data required for a calculation in advance of
performing the calculation. If the size of the component data exceeds the value of the MODE
DESPERATE argument Ferret attempts to perform the calculation in pieces.

For example, the calculation "LIST/I=1/J=1 U[K=1:100,L=1:1000@AVE]" requires
100*1000=100,000 points of component data although the result is only a line of 100 points on
the K axis. If 100,000 exceeds the current value of the MODE DESPERATE argument Ferret
splits this calculation into smaller sized chunks along the K axis, say, K=1:50 in the first chunk
and K=51:100 in the second.

Ferret is also sensitive to the performance penalties associated with reading data from the disk.
Splitting the calculation along axis of the stored data records can require the data to be read
many times in order to complete the calculation. Ferret attempts to split calculations along
efficient axes, and will split along the axis of stored data only in desperation, if MODE
DESPERATE is SET.

Example:

yes? SET MODE DESPERATE:5000

 default state: canceled (default argument: 80000)

Note: Use MODE DIAGNOSTIC to see when splitting is occurring.

Arguments

Use SHOW MEMORY/FREE to see the total memory available (as set with SET
MEMORY/SIZE).

Whenever the size of memory is set using SET MEMORY the MODE DESPERATE argument
is reset at one tenth of memory size. For most purposes this will be an appropriate value. The
user may at his discretion raise or lower the MODE DESPERATE value based on the nature of
a calculation. A complex calculation, with many intermediate variables, may require a smaller
value of MODE DESPERATE to avoid an "insufficient memory" error. A simple calculation,
such as the averaging operation described above, will typically run faster with a larger MODE
DESPERATE value. The upper bound for the argument is the size of memory. The lower
bound is "memory block size."

Ref Sec31.7.5. SET MODE DIAGNOSTIC

SET MODE DIAGNOSTIC causes Ferret to display diagnostic information in real time about
its internal functioning. It is intended to help Ferret developers diagnose performance problems
by displaying what the Ferret memory management subsystem is doing. The message "strip
gathering on xxx axis" indicates that Ferret has broken up a calculation into smaller pieces.
Subsequent "strip" and "gathering" messages indicate that sub-regions of the calculations are
being processed and brought together.

 default state: canceled

See the FAQ, How do I interpret the output of "SET MODE DIAGNOSTIC? for help
interpreting the output.

Ref Sec31.7.6. SET MODE GRATICULE

SET MODE GRATICULE turns on plotting of graticule lines at the tic marks of both the
horizontal and vertical axes of all subsequent plots. In effect this is equivalent to specifying
the GRATICULE qualifier for all plot commands (See p. 351). You may specify line types
with SET MODE GRATICULE:(type) where type is color, dash, or thickness

Examples:

yes? SET MODE GRATICULE

yes? SET MODE GRATICULE:(color=red)

yes? SET MODE GRATICULE:(dash,color=blue)

http://ferret.pmel.noaa.gov/Ferret/FAQ/other/mode_diagnostic.html

yes? SET MODE GRAT:"LARGE(COLOR=blue),SMALL(COLOR=lightblue)"

Currently, dash types cannot be customized, as they can for PLOT/DASH. Look for this in a
future release of Ferret.

Ref Sec31.7.7. SET MODE IGNORE_ERROR

SET MODE IGNORE_ERROR causes Ferret to continue execution of a command file despite
errors encountered. (See command GO, p. 331.)

 default state: canceled

Ref Sec31.7.8. SET MODE INTERPOLATE

Note: The transformation @ITP provides the same functionality as MODE INTERPOLATE
with a greater level of control.

SET MODE INTERPOLATE affects the interpretation of world coordinate specifiers (/X, /Y,
/Z, and /T) in cases where the position is normal to the plane in which the data is being
examined. When this mode is SET and a world coordinate is specified which does not lie
exactly on a grid point, Ferret automatically interpolates from the surrounding grid point
values. When this mode is canceled, the same world coordinate specification is shifted to the
grid point of the grid box that contained it before computations were made (see examples).

 default state: canceled

Example:

If the grid underlying the variable temp has points defined at Z=5 and at Z=15 (with the grid
box boundary at Z=10) and data is requested at Z=12 then

yes? SET MODE INTERPOLATE

yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists temperature data in the X-Y plane obtained by interpolating between the Z=5 and Z=15

planes. Whereas,

yes? CANCEL MODE INTERPOLATE

yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists the data at Z=15. The output documentation always reflects the true location used.

Ref Sec31.7.9. SET MODE LABELS

SET MODE LABELS restores the default behavior of labeling, if CANCEL MODE LABELS
has been issued. CANCEL MODE LABELS implements the /NOLABELS qualifier for all
plots after it has been set.

Ref Sec31.7.10. SET MODE LOGO

SET MODE LOGO turns on the Ferret logo (three lines at the upper right of plots), if it has
been turned off by CANCEL MODE LOGO

Ref Sec31.7.11. SET MODE JOURNAL

SET MODE JOURNAL causes Ferret to record all commands issued in a journal file. Output
echoed to this file may be turned on and off via mode JOURNAL at any time.

 default state: set

Example:

yes? SET MODE JOURNAL:my_journal_file.jnl

The optional argument to MODE JOURNAL specifies the name of the output journal
file—with no argument, the default name "ferret.jnl" is used. Journal files for successive Ferret
sessions are handled by version number. See the chapter "Computing Environment", section
"Output file naming" (p. 241).

Ref Sec31.7.12. SET MODE LATIT_LABEL

SET MODE LATIT_LABEL causes Ferret to output latitude coordinate information in degrees
N/S format (instead of the internal latitude coordinate). This affects both plotted and listed
output.

This mode accepts an optional argument specifying the degree of precision for the output. If
the argument is omitted the precision is unchanged from its last value.

Example:

yes? SET MODE LAT:2

 default state: set (argument: 1)

Arguments

See command SET MODE LONG (p. 386) for a detailed description of precision control.

Ref Sec31.7.13. SET MODE LONG_LABEL

SET MODE LONG_LABEL causes Ferret to output longitude coordinate information in
degrees E/W format (instead of the internal longitude coordinate). This will affect both plotted
and listed output.

This mode accepts an optional argument specifying the degree of precision for the output. If
the argument is omitted the precision will be unchanged from its last value.

Example:

yes? SET MODE LONG:2

 default state: set (argument: 1)

Arguments

The argument of SET MODE LONG is an integer specifying the precision. If the argument is

positive or zero it specifies the maximum number of decimal places to display. If the argument
is negative it specifies the maximum number of significant digits to display.

Examples:

Suppose the longitude to be displayed is 165.23W. Then

yes? SET MODE LONG:1 will produce 165.2W

yes? SET MODE LONG:-3 will produce 165W

When LONG mode is canceled the argument still determines the output precision.

Ref Sec31.7.14. SET MODE METAFILE

The optional argumenSET MODE METAFILE causes Ferret to capture all graphics in
metafiles. These metafiles can later be routed to various devices to obtain hard copy output or
postscript files.

The optional argument to MODE METAFILE specifies the name of the output metafile—with
no argument, the default name "metafile.plt" is used. Multiple output files (i.e., successive
plots) are handled by version number. See the chapter "Computing Environment", section
"Output file naming" (p. 241).

See the chapter "Computing Environment", section "Hard copy" (p. 238) for details on
generating hard copy.

Example:

yes? SET MODE METAFILE:june_sst.plt

 default state: canceled (default argument when set: "metafile.plt")

Ref Sec31.7.15. SET MODE PPLLIST

Directs listed output from PPLUS commands (e.g., PPL LIST LABS) to the specified file. This
mode is useful for creating scripts that customize plots. The user can specify the name of the

output file by giving it as an argument, otherwise file name "ppllist.out" is assigned.

Example:

yes? SET MODE PPLLIST:plot_symbols.txt

yes? PPL LISTSYM

yes? SPAWN grep "WIDTH" plot_symbols.txt

 default state: canceled

Ref Sec31.7.16. SET MODE REFRESH

The SET MODE REFRESH command causes Ferret to update windows following "occlusion"
events on X-servers that lack a backing store (SGI workstations have been a case in point).

 default state: canceled (except on SGI systems)

Ref Sec31.7.17. SET MODE SEGMENTS

SET MODE SEGMENTS causes Ferret to utilize GKS segments ("GKS" is the Graphical
Kernel System—an international graphics standard). On some systems MODE SEGMENTS
may be necessary to update windows following "occlusion" events or to resize window with
the mouse.

Segments, however, make heavy demands on the system's virtual memory. If Ferret crashes
during graphics output due to insufficient virtual memory try CANCEL MODE SEGMENTS.

 default state: set

Ref Sec31.7.18. SET MODE STUPID

Note: MODE STUPID is included for diagnostic purposes only.

SET MODE STUPID controls the ability of Ferret to reuse results left in memory from
previous commands. It also effects its ability to reuse intermediate variables that are referenced
multiple times during complex calculations. Given with no argument

yes? SET MODE STUPID

causes Ferret to forget data cached in memory. The result is that all requests for variables are
read from disk and no intermediate calculations are reused. The program will be significantly
slower as a result.

A lesser degree of cache limitation occurs with the command

yes? SET MODE STUPID: weak_cache

which causes Ferret to revert to the cache access strategy that it used previous to Ferret version
5.0. In this mode cache hits are unreliable unless the region of interest is fully specified.
(Unspecified limits will typically default to the full range of the relevant axis.)

 default state: canceled

Ref Sec31.7.19. SET MODE VERIFY

SET MODE VERIFY causes commands from a command file ("GO file") to be displayed on
the screen as they are executed. Note that if MODE VERIFY is canceled, loop counting in the
REPEAT command is turned off.

 default state: SET, argument "default"

Note: Many GO files begin with CANCEL MODE VERIFY to inhibit output and end with
SET MODE/LAST VERIFY to restore the previous state. Only if an error or interrupt occurs
during the execution of such a command file will the state of MODE VERIFY be affected.

SET MODE VERIFY can accept arguments to further refine control over command echoing.

yes? SET MODE VERIFY: DEFAULT

● This will be the default state if no argument is given
● Ferret echos commands taken from GO scripts

● Ferret echos commands in which symbol substitutions occur or in which embedded
expressions are evaluated

yes? SET MODE VERIFY: ALL

● In addition to the cases above Ferret also displays the individual commands that are
generated by repeat loops and semicolon-separated command groups

● Ferret displays a REPEAT loop counter ("!-> REPEAT: ...")

yes? SET MODE VERIFY: ALWAYS

● Echoing behavior is the same as argument ALL but ALWAYS, in addition, causes
CANCEL MODE VERIFY to be ignored when it is encountered in a GO file. This
functionality is useful when debugging GO scripts. Entering CANCEL MODE
VERIFY or SET MODE VERIFY:DEFAULT from the command line will cancel this
 state.

Ref Sec31.7.20. SET MODE WAIT

SET MODE WAIT causes Ferret to wait for a keyboard keystroke from the user after each
plotted output is completed. This is useful on graphics terminals that do not have a separate
graphics plane; on these terminals SET MODE WAIT prevents the graphical output from
being wiped off the screen until the user is ready to proceed.

 default state: canceled

Ref Sec31.8. SET MOVIE

/COMPRESS /FILE /LASER /START

Designates a file (specified or default) for storing graphical images as movie frames (in HDF

Raster-8 format). Note that the FRAME/FILE=filename qualifier is generally preferable to the
SET MOVIE command, as it is simpler and more flexible. See the chapter "Animations and
gif Images (p. 157) for further explanation.

yes? SET MOVIE[/qualifiers]

Command qualifiers for SET MOVIE:

SET MOVIE/COMPRESS=

Turns on or off compression of HDF frames using run length compression.

yes? SET MOVIE/COMPRESS=OFF

The allowed arguments are "on" and "off" —CANCEL MOVIE does not affect this qualifier.

 default state: on

SET MOVIE/FILE

Specify an output file to receive movie frames.

!specify a new filename
yes? SET MOVIE/FILE=filename

 or

!reactivate a previously specified filename after CANCEL MOVIE
yes? SET MOVIE/FILE

The default movie filename extension is ".mgm"

The default movie filename is "ferret.mgm"

SET MOVIE/LASER

Output to Panasonic OMDR. Valid only on older VAX/VMS systems.

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/Chapter5_Animations_and_gif_images.htm#Chapter5

SET MOVIE/START

Only valid for use on older VAX/VMS systems with the Panasonic Optical Memory Disk
Recorder (OMDR). Only valid with /LASER qualifier.

Ref Sec31.9. SET REGION

/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT

Specifies the default space-time region for the evaluation of expressions.

yes? SET REGION[/qualifiers] [reg_name]

See the chapter "Grids and Regions", section "Regions" (p. 146) for further information.

Examples:

1) yes? SET REGION/X=140E
Sets X axis position in the default context.

2) yes? SET REGION/@N !N specifies X and Y but not Z or T
Sets only X and Y in the default context (since X and Y are defined in region N but Z and T
are not).

3) yes? SET REGION N
Sets ALL AXES in the default region to be exactly the same as region N. Since Z and T are
undefined in region N they will be set undefined in the default context.

4) yes? SET REGION/@N/Z=50:250
Sets X and Y in the default region to be exactly the same as region N and then sets Z to the
range 50 to 250.

5) yes? SET REGION/DZ=-5
Set the region along the Z axis to be 5 units less than its current value.

6) yes? SET REGION/DJ=-10:10
Increases the current vertical axis range by 10 units on either end of the axis.

Command qualifiers for SET REGION:

SET REGION/I=/J=/K=/L=/X=/Y=/Z=/T=
Sets region bounds for specified axis subscript (I, J, K, or L) or axis coordinates (X, Y, Z, or
T). See examples above.

SET REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Modifies current region information by the specified increment of an axis subscript (I, J, K, or
L) or axis coordinate (X, Y, Z, or T). See examples above. Syntax: /D*=val, or /D*=lo:hi.

Ref Sec31.10. SET VARIABLE

/BAD /GRID /TITLE /UNIT /DATASET/NAME/OFFSET/SCALE

Modifies attributes of a variable defined by DEFINE VARIABLE or SET DATA/EZ. This
command permits variables within a single EZ data set to be defined on different grids and it
allows the titles and units to be superseded for the duration of a session, only, on NetCDF and
GT data sets.

yes? SET VARIABLE/qualifiers variable_name

Parameters

The variable name can be a simple name or a name qualified by a data set.

Example:

yes? SET VAR/UNITS="CM" WIDTH[D=snoopy]

Command qualifiers for SET VARIABLE:

SET VARIABLE/BAD=
Designates a value to be used as the missing data flag. The qualifier is applicable to EZ data set
variables and to NetCDF data sets. The bad value which is specified will be used in
subsequent outputs and calculations involving this variable. It applies only for the duration of
the current Ferret session. It does not alter the data files. It is not applicable to variables
defined with DEFINE VARIABLE.

For NetCDF files only, if the file contains Fortran NaN (not a number), the user may designate
NaN as the bad value flag for a given variable in a netCDF dataset. SET
VARIABLE/BAD=NAN.

When the command SET VARIABLE/BAD= is be used to set one of the two missing value
flags of a file variable, the bad value which is specified will be used in subsequent outputs and
calculations involving this variable.

Ferret is aware of up to two missing value flags for each variable in a netCDF file. Under most
circumstances, netCDF file variables use only a single flag. With a command like

SET VARIABLE/BAD=-999 my_file_var

you can specify -999 as an additional missing value flag. It is this value which will be present
in all subsequent SAVEs to files and calculations.

Note that if the netCDF file contains two distinct flag values specified by the netCDF attributes
"missing_value" and "_FillValue", then this command will migrate the value specified by
missing_value to the position previously occupied by _FillValue and replace the one specified
by missing_value. Thus a double usage of this command allows you to control both flags. You
can use the command "SHOW DATA/VARIABLES" to see both bad value flags.

SET VARIABLE/GRID=
Sets the defining grid for a variable in an EZ data set. The argument may be an expression.

Example:

yes? SET VARIABLE/GRID=my_grid width[D=snoopy]

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) is specified. By default Ferret will use grid EZ, a line of up to 20480 points oriented along
the X axis. The qualifier is not applicable to variables defined with DEFINE VARIABLE.

SET VARIABLE/NAME=
This is effectively a RENAME command -- applies to all classes of variables (but not pseudo-
variables). Useful for "repairing" variables whose definitions are inadequate as-is but whose
variable names are significant. A common application of this is in creating output netCDF files
in which contain modified versions of variables from input files.

yes? SET VARIABLE/NAME=new old

Example:

yes? SET VARIABLE/NAME=north_vel V[d=1]

SET VARIABLE/TITLE=
Associates a title with the variable. This title appears on plotted outputs and listings. The
qualifier is applicable to all variables.

yes? SET VARIABLE/TITLE="title string" var_name

SET VARIABLE/UNITS=
Associates units with the variable. The units appear on plotted outputs and listings. The
qualifier is applicable to all variables.

yes? SET VARIABLE/UNITS="units string" var_name

SET VARIABLE/OFFSET=
For variables in NetCDF files only, set an offset which will always be applied when the data is
read from the file. This offset is applied after any offset factor specified by an attribute in the
file. It is not applied to missing data.

SET VARIABLE/SCALE=
For variables in NetCDF files only, set a scale factor which will always be applied when the
data is read from the file. This factor is applied after any scale factor specified by an attribute
in the file. It is not applied to missing data.

When a scale factor and offset are specified, the scale factor is applied first:

var = scale*var_in + offset

If scale and offset values have been set, with either NetCDF attributes or with a SET
VARIABLE/SCALE=/OFFSET=, they may be accessed with the RETURN= keyword.

Example:

yes? USE coads_climatology
yes? SAY `sst,RETURN=nc_scale`
!-> MESSAGE/CONTINUE 1
1
yes? SAY `sst,RETURN=nc_offset`
!-> MESSAGE/CONTINUE 0
0

yes? SET VAR/SCALE=10/OFF=50 sst
yes? SAY `sst,RETURN=user_off`
!-> MESSAGE/CONTINUE 50
50
yes? SAY `sst,RETURN=user_scale`
!-> MESSAGE/CONTINUE 10
10

Ref Sec31.11. SET VIEWPORT

Sets the rectangular region within the output window where output will be drawn.

yes? SET VIEWPORT view_name

Issuing the command SET VIEWPORT is best thought of as entering "viewport mode." While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots are drawn in a
single viewport without the use of /OVERLAY the current plot will erase and replace the
previous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of "viewport mode" is canceled.

Pre-defined viewports exist for dividing the window into four quadrants and for dividing the
window in half horizontally and vertically. See the chapter "Customizing Plots", section "Pre-
defined viewports" (p. 190) for a list.

Ref Sec31.12. SET WINDOW

/ASPECT /CLEAR /LOCATION /NEW /SIZE

Creates, resizes, reshapes or moves graphics output windows.

yes? SET WINDOW[/qualifiers] [window_number]

Note: Multiple windows may be simultaneously viewable but only a single window receives
output at any time.

See commands SHOW WINDOWS (p. 412) and CANCEL WINDOW (p. 305) for additional
information.

Examples:

1) yes? SET WINDOW/NEW
Creates a new output window and sends subsequent graphics to it.

2) yes? SET WINDOW 3
Sends subsequent graphics to window 3.

3) yes? SET WINDOW/SIZE=.5
Resizes current window to ½ of full.

4) yes? SET WINDOW/ASPECT=.5
Reshapes current window with Y/X equal to 1:2. The effect of this command is not seen until
a plot is sent to the window.

5) yes? SET WINDOW/LOCATION=0,.5
Puts the lower left corner of the current window at the left border of the display and half way
up it.

Command qualifiers for SET WINDOW:

SET WINDOW/ASPECT
Sets the aspect ratio of the output window and hard copy. Note the new ratio doesn't take effect
until a plot command is issued in the window.

Examples:

1) yes? SET WINDOW/ASPECT=y_over_x n
Sets the overall aspect ratio of window n.

2) yes? SET WINDOW/ASPECT=y_over_x
Sets the overall aspect ratio of the current window.

3) yes? SET WINDOW/ASPECT=y_over_x:AXIS
Sets the axis length aspect ratio of the current window.

The total size (area) of the output window is not changed.

The default value for the overall window ratio is y/x = 8.8/10.2 ~ 0.86.

The default value for the axis length ratio is y/x = 6/8 = 0.75.

Use PPLUS/RESET or SET WINDOW/ASPECT=.75:AXIS to restore defaults.

The aspect ratio specified is a default for future SET WINDOW commands

The origin (lower left) is restored to its default values: 1.2, 1.4

When using "SET WINDOW n" to return to a previous window that differs from the current
window in aspect ratio, it is necessary to re-specify its aspect ratio with /ASPECT, otherwise
PPLUS will not be properly reset. If you return to a previous window, you cannot expect to
make an overlay on the plot that is there. The PPLUS settings for axis lengths and other
properties of the plot will have been overwritten.

SET WINDOW/CLEAR
Clears the image(s) in the current or specified window. Useful with viewports.

SET WINDOW/LOCATION
Sets the location for the lower left corner of named (or current) window. The coordinates x and
y must be values between 0 and 1 and refer to distances from the lower left corner of the
display screen (total length and width of which are each 1).

yes? SET WINDOW/LOCATION=x,y [window_number]

SET WINDOW/NEW
Causes future graphical output to be directed to a new window. The window will be created at
the next graphics output.

yes? SET WINDOW/NEW

SET WINDOW/SIZE
Resizes a window to r times the area of the standard window. (The length of the sides changes
by the square root of r.) If the window number is omitted the command will resize the
currently active window. (The default window size is 0.7.)

yes? SET WINDOW/SIZE=r [window_number]

The actual size of the window is reset to fit on the output device.

Ref Sec32. SHADE

/I/J/K/L /X/Y/Z/T /D /FRAME /KEY /LEVELS /LINE /NOAXIS /NOKEY /NOLABELS
/OVERLAY /PALETTE /PATTERN /SET_UP /TITLE /TRANSPOSE /HLIMITS/
 /VLIMITS /AXES

Produces a shaded (rectangular raster) plot of a 2-D field. By default a color key is drawn and
contour lines are not drawn.

SHADE[/qualifiers] expression

In a curvilinear coordinate system (map projections)

SHADE [/qualifiers] expression, xcoords, ycoords (see p. 201)

Parameters

The expression may be any valid expression. See the chapter "Variables and Expressions",
section "Expressions" (p. 65) for a definition of valid expressions. The expression will be
inferred from the current context if omitted from the command line. Multiple expressions are
not permitted in a single SHADE command.

Command qualifiers for SHADE:

SHADE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

SHADE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

SHADE/FRAME
Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE. In general the FRAME command (p. 331) is more flexible
and we recommend its use rather than this qualifier.

SHADE/KEY
Displays a color key for the palette used in the shaded plot. By default a key is drawn unless

the /LINE or /NOKEY qualifier is specified. To control the color key position and labeling,
 see the command SHAKEY in the appendix, "Ferret Enhancements to PPLUS" (p. 529).

SHADE/KEY=CONTINUOUS
Chooses a continous color key for the palette used in a shade plot, without lines separating the
colors. This option is particularly good for plots having many levels.

SHADE/LEVELS
Specifies the SHADE levels or how the levels will be determined. If the /LEVELS qualifier is
omitted Ferret automatically selects reasonable SHADE levels.

See the chapter "Customizing Plots", section "Contouring" (p. 193) for examples and more
documentation on /LEVELS and color_thickness indices, and also the demonstration
"custom_contour_demo.jnl".

SHADE/LINE
Overlays contour lines on a shaded plot. When /LINE is specified the color key is omitted
unless specifically requested via /KEY.

SHADE/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

SHADE/NOAXIS
Suppresses all axis lines, tics and labeling so that no box appears surrounding the contour plot.
This is especially useful for map projection plots.

SHADE/NOLABELS
Suppresses all plot labels.

SHADE/OVERLAY
Causes the indicated shaded plot to be overlaid on the existing plot.

Note (SHADE/OVERLAY with time axes):
A restriction in PPLUS requires that if time is an axis of the shaded plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid shaded plot fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis. See the section on overlaying with a time axis (p. 171).

SHADE/PALLETTE=
Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix command

% Fpalette '*' to see available palettes. The file suffix *.spk is not necessary when
specifying a palette. See command PALETTE (p. 344) for more information.

Yes? SHADE/PALETTE=land_sea rose

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE (p. 344) command for further discussion.

SHADE/PATTERN=
Specifies a pattern file (otherwise, the current default pattern specification is used). The file
suffix *.pat is not necessary when specifying a pattern. Try the Unix command % Fpattern
'*' to see available patterns. See command PATTERN (p. 345) for more information.

SHADE/SET_UP
Performs all the internal preparations required by program Ferret for a shaded plot but does not
actually render output. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL SHADE command. This permits plot customizations that are
not possible with Ferret command qualifiers. See the chapter "Customizing Plots" (p. 165).

Example: Customize the colorbar key for a shade plot. Note that the position of the shade key
colorbar is in units of inches from the page origin. These commands put the color key at the
top of the plot, and remove the labels that would by default be there. The value -0.12 for the
label size tells ferret to put the key labels above the colorbar.

yes? use coads_climatology
yes? shade/title="shakey labels above"/lev=(0,32,1)/set sst[l=1]
yes? let x1 = `(pplxorg)`
yes? let y1 = `(pplyorg)+(pplylen)`
yes? let y2 = `(pplyorg)+(pplylen)+0.4`
yes? ppl shakey ,0,-0.12,2,,,`x1`,,`y1`,`y2`
yes? go unlabel 4
yes? go unlabel 5
yes? go unlabel 6
yes? ppl shade
yes? ppl list shakey

SHADE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s).

yes? SHADE/TITLE="title string" expression

SHADE/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn
horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data
axis is vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /HLIMITS (below) for further details. Use /TRANSPOSE
manually to reverse this effect.

SHADE/HLIMITS=
Specifies the horizontal axis range and tic interval (otherwise, Ferret selects reasonable
values).

yes? SHADE/HLIMITS=lo:hi:increment

The optional "increment" parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

SHADE/VLIMITS=
Specifies the vertical axis range and tic interval. See /HLIMITS (above)

SHADE/XLIMITS=/YLIMITS=
Note: XLIMITS and YLIMITS have been deprecated. Please use HLIMITS and VLIMITS
instead.

SHADE/AXES[=top,bottom,left,right]

Turns plotting of individual axes off and on. This replaces the use of the "PPL AXSET"
command. The syntax is

 yes? SHADE/AXES[=top,bottom,left,right] var

where the arguments are 1 to turn the axis on and 0 to turn it off. For example:

yes? SHADE/AXES=0,1,1,0 sst ! Draws the bottom and left axes only

SHADE/GRATICULE[=line specifiers]

(Introduced in Ferret version 5.6) Turns on graticule lines for the horizontal and vertical axes.
 These are lines across the plot at the tic marks. /GRATICULE sets both horizontal and
vertical lines; to set each separately see /HGRATICULE and /VGRATICULE, below. The
syntax is

 yes? SHADE/GRATICULE[=line or dash,COLOR=,THICKNESS=] var

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to GRAT may be placed in parentheses

yes? SHADE/GRAT sst ! default graticules

yes? SHADE/GRAT=(LINE,COLOR=red,THIICK=3) sst

yes? SHADE/GRAT=(DASH,COLOR=lightblue) sst

yes? SHADE/FILL/GRAT=(DASH,COLOR=white) sst

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /GRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes.

yes? ppl axnmtc 2,2
yes? SHADE/GRAT="LARGE(COLOR=blue,thick),SMALL(COLOR=lightblue)" sst

SHADE/HGRATICULE[=line specifiers]/VGRATICULE[=line specifiers]

Turns on graticule lines and sets the line characteristics of the graticule for the horizontal or
vertical axis separately. You may specify only one of /HGRAT or /VGRAT if desired. These
are lines across the plot at the tic marks. The syntax is

 yes? SHADE/HGRAT[=line or dash,COLOR=,THICKNESS=] /VGRAT=line or
dash,COLOR=,THICKNESS=] var

where the default is a thin, solid black line. The line colors available are Black, Red, Green,

Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to HGRAT may be placed in parentheses

yes? SHADE/HGRAT/VGRAT sst !this is equivalent to PLOT/GRAT

yes? SHADE/HGRAT=(LINE,COLOR=red,THIICK=3)/VGRAT=(color=green) sst

yes? SHADE/HGRAT=(DASH,COLOR=lightblue) sst ! horizontal only

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /HGRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes.

yes? ppl axnmtc 2,2
yes? SHADE/HGRAT="LARGE(COLOR=blue,thick),SMALL(COLOR=lightblue)"
/VGRAT="LARGE(COLOR=blue,thick) sst

Ref Sec33. SHOW

/ALL

Displays program states and stored values.

Command qualifiers for SHOW:

SHOW/ALL
Executes all SHOW options. This command gives a complete description of the current state,
including information about region, grids, axes, variables, and the state of various modes
(default or set with SET MODE).

yes? SHOW/ALL

Arguments:

The names of variables, data sets, or other definitions can be specified using wildcards. The *
wildcard matches any number of characters in the name; the question wildcard matches exactly
one character.

Ref Sec33.1. SHOW ALIAS

Lists all command aliases and the full command names for which they stand, or, with an
argument, shows a specified command alias.

yes? SHOW ALIAS [alias_name]

Ref Sec33.2. SHOW AXIS

Shows a basic description of the named axis.

SHOW AXIS[/qualifiers] axis_name

A typical output appears below. The columns are:

name name of axis (used also in DEFINE AXIS and DEFINE GRID)

pts number of points on axis; "r" or "i" for regular or irregular spacing, "m" if the axis
is "modulo" (repeating)

axis the orientation of the axis; "(-)" after the "r" or "i" on a depth axis indicates
increasing downward

start position of first point on the axis

end position of last point on the axis

The axis span (length of the axis), and for modulo axes, the modulo length are also given.

yes? SHOW AXIS PSXT
name axis # pts start end
PSXT LONGITUDE 160 r 130.5E 70.5W
 Axis span (to cell edges) = 360 (modulo length = axis span)

yes? SHOW AXIS/I=1:2 COADSX
name axis # pts start end
COADSX LONGITUDE 180mr 21E 19E(379)
 Axis span (to cell edges) = 360 (modulo length = axis span)
 I X XBOX XBOXLO
 1> 21E 2 20E
 2> 23E 2 22E

Command qualifiers for SHOW AXIS:

SHOW AXIS/I=/J=/K=/L=/X=/Y=/Z=/T=/XML
Displays the coordinates and grid box sizes for the specified axis. Optionally, low and high
limits and a delta value may be specified to restrict the range of values displayed.

yes? SHOW AXIS/X[=lo:hi:delta] axis-name

Example:

yes? SHOW AXIS/L=1:12:3 my_custom_time_axis

SHOW AXIS/ALL
Show a brief summary of all axes defined.

yes? SHOW AXIS/ALL

SHOW AXIS/XML
List the axis information in XML-style

yes? SH AXIS/XML fnocx
<axis name="FNOCX">
<units>degrees_east</units>

<length>144</length>
<start>20E</start>
<end>17.5E(377.5)</end>
<point_spacing>even</point_spacing>
<modulo>yes</modulo
</axis>

Ref Sec33.3. SHOW COMMANDS

/ALL

Displays commands, subcommands, and qualifiers recognized by program Ferret. This
command does not display aliases; use SHOW ALIAS.

SHOW COMMAND [command_name or partial_command]

Note: This is the most reliable way to view command qualifiers. The output of this command
will be current even when this manual is out of date.

Examples:

yes? SHOW COMMAND S ! show all commands beginning with "S"

yes? SHOW COMMAND ! show all commands

yes? SHOW COMMAND PLOT ! shows command PLOT and all its qualifiers

Ref Sec33.4. SHOW DATA_SET

/ALL /BRIEF /FILES /FULL /VARIABLE /XML

Shows information about the data sets which have been SET and indicates the current default
data set. By default the variables and their subscript ranges are also listed.

yes? SHOW DATA[/qualifiers] [set_name_or_number1,set2,...]

If no data set name or number is specified then all SET data sets are shown.

Command qualifiers for SHOW DATA_SET:

SHOW DATA/ALL
This qualifier has no effect on this command; it exists for compatibility reasons.

SHOW DATA/BRIEF
Shows only the names of the data sets; does not describe the data contained in them.

SHOW DATA/FILES
Displays the names of the data files for this data set and the ranges of time steps contained in
each. Output is formatted as date strings or as time step values depending on the state of
MODE CALENDAR.

SHOW DATA/FULL
Equivalent to /VARIABLES and /FILES used together.

SHOW DATA/VARIABLES
In addition to the information given by the SHOW DATA command with no qualifiers, this
query also provides the grid name and world coordinate limits for each variable in the data set.

SHOW DATA/XML
For NetCDF files, including those accessed via DODS, SHOW DATA/XML and SHOW
DATA/VAR/XML list information about the file and variables as xml-style output.

Example: SHOW DATA

SHOW DATA produces a listing similar to the one below. The output begins with the
descriptor file name (for TMAP-formatted data) and data set title. The columns I, J, K, and L
give the subscript limits for each variable with respect to its defining grid (use SHOW
DATA/FULL and SHOW GRID variable_name for more information).

yes? SET DATA levitus_climatology

yes? SHOW DATA

 currently SET data sets:

 1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des (default)

 name title I J K L

 TEMP TEMPERATURE 1:360 1:180 1:20 1:1

 SALT SALINITY 1:360 1:180 1:20 1:1

Example: SHOW DATA/XML, SHOW DATA/VARIABLES/XML

Example:

yes? USE monthly_navy_winds

yes? SHOW DATA/XML
<dataset>
<title> </title>
<vname>UWND</vname>
<vname>VWND</vname>
</dataset>

yes? SHOW DATA/VAR/XML
<var name="UWND">
<units>M/S</units>
<long_name>ZONAL WIND</long_name>
<_FillValue>-99.9</_FillValue>
<missing_value>-99.9</missing_value>
<grid name="GDN1">
<xaxis>FNOCX</xaxis>
<yaxis>FNOCY</yaxis>
<taxis>TIME</taxis>
</grid>
</var>
<var name="VWND">
<units>M/S</units>
<long_name>MERIDIONAL WIND</long_name>
<_FillValue>-99.9</_FillValue>
<missing_value>-99.9</missing_value>
<grid name="GDN1">
<xaxis>FNOCX</xaxis>
<yaxis>FNOCY</yaxis>
<taxis>TIME</taxis>
</grid>
</var>

Ref Sec33.5. SHOW EXPRESSION

Shows the current expression(s) implied or set with SET EXPRESSION. If not explicitly set
with this command, the default current context expression is the argument of the most recent
"action" command (PLOT, SHADE, CONTOUR, VECTOR, WIRE, etc.) See the chapter
"Variables and Expressions", section "Expressions" (p. 65) for an explanation and list of action
commands.

yes? SHOW EXPRESSION

Ref Sec33.6. SHOW FUNCTION

/ALL /BRIEF /EXTERNAL /INTERNAL /DETAILS

Shows a complete list of the functions defined in Ferret including descriptions of the function
arguments.

yes? SHOW FUNCTION[/qualifiers] [function_name]

If no qualifier or function name is given then all functions are listed. SHOW FUNCTION will
accept name templates such as

yes? SHOW FUNCTION *day*
 DAYS1900 (day, month, year)
 days elapsed since Jan. 1, 1900

Parameters

The parameter(s) may be the name of a function, with * replacing part of the string as above.

Command qualifiers for SHOW FUNCTION:

SHOW FUNCTION/ALL
List all functions defined

SHOW FUNCTION/BRIEF
List the functions and their arguments in brief form; no function or argument descriptions.

SHOSHOW FUNCTION/EXTERNAL
List only the available Ferret external functions (p. 245).

SHOW FUNCTION/INTERNAL
List only the internally defined Ferret functions.

SHOW FUNCTION/DETAILS
Lists the axis inheritance for grid-changing functions

Example:.SHOW FUNCTION/DETAILS

yes? SHOW FUNCTION/DETAILS SAMPLEXY
SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS)
 Returns data sampled at a set of (X,Y) points, using linear
interpolation
 Grid of result:
 X: ABSTRACT (result will occupy indices 1...N)
 Y: NORMAL (no axis)
 Z: inherited from argument(s)
 T: inherited from argument(s)
 DAT_TO_SAMPLE: variable (x,y,z,t) to sample
 Influence on output grid:
 X: no influence (indicate argument limits with "[]")
 Y: no influence (indicate argument limits with "[]")
 Z: passed to result grid
 T: passed to result grid
 XPTS: X indices of sample points
 Influence on output grid:
 X: no influence (indicate argument limits with "[]")
 Y: no influence (indicate argument limits with "[]")
 Z: no influence (indicate argument limits with "[]")
 T: no influence (indicate argument limits with "[]")
 YPTS: Y indices of sample points
 Influence on output grid:
 X: no influence (indicate argument limits with "[]")
 Y: no influence (indicate argument limits with "[]")
 Z: no influence (indicate argument limits with "[]")
 T: no influence (indicate argument limits with "[]")

Ref Sec33.7. SHOW GRID

/I/J/K/L /X/Y/Z/T /ALL /DYNAMIC

Shows the name and axis limits of a grid.

yes? SHOW GRID[/qualifiers] [var_or_grid1 var_or_grid2 ...]

Example:

(See command SHOW AXIS, p. 401, for an explanation of the columns.)

yes? SET DATA levitus_climatology

yes? SHOW GRID salt

 GRID GLEVITR1

 name axis # pts start end

 XAXLEVITR LONGITUDE 360mr 20.5E 19.5E(379.5)

 YAXLEVITR LATITUDE 180 r 89.5S 89.5N

 ZAXLEVITR DEPTH(-) 20 i 0m 5000m

Parameters

The parameter(s) may be the name of one or more grid(s) or variable(s). If no parameter is
given SHOW GRID displays the grid of the last variable accessed. This is the only mechanism
to display the grid of an algebraic expression.

Note: To apply SHOW GRID to an algebraic expression it is necessary for Ferret to have
evaluated the expression in a previous command. The command LOAD is useful for this
purpose in some circumstances.

Command qualifiers for SHOW GRID:

SHOW GRID/I=/J=/K=/L=/X=/Y=/Z=/T=
Displays the coordinates and grid box sizes for the specified axis. Optionally, low and high
limits and a delta value may be specified to restrict the range of values displayed. The
argument may be an expression.

yes? SHOW GRID/X[=lo:hi:delta] [variable_or_grid]

Example:

yes? SHOW GRID/L=1:12:3 sst[coads_climatology]

SHOW GRID/ALL
Shows the names only of all grids defined.

yes? SHOW GRID/ALL

SHOW GRID/DYNAMIC
Shows the names of dynamic grids that are defined.

yes? SHOW GRID/DYNAMIC

SHOW GRID/XML gridname
Shows the grid information in XML-style format.

yes? USE monthly_navy_winds
yes? SHOW GRID/XML gdn1
<grid name="GDN1">
<xaxis>FNOCX</xaxis>
<yaxis>FNOCY</yaxis>
<taxis>TIME</taxis>
</grid>

Ref Sec33.8. SHOW LIST

Shows the current states of the LIST command.

yes? SHOW LIST

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

Ref Sec33.9. SHOW MEMORY

/ALL/FREE/PERMANENT/TEMPORARY

Shows the state of the memory cache.

yes? SHOW MEMORY

Shows the current size of the cache.

yes? SHOW MEMORY[/qualifiers]

Command qualifiers for SHOW MEMORY:

SHOW MEMORY/ALL
Shows all variables currently cached in memory—permanent and temporary.

SHOW MEMORY/FREE
Shows cache memory and memory table space that remains unused.

Cache memory is organized into "blocks." One block is the smallest unit that any variable
stored in memory may allocate. The total number of variables that may be stored in memory
cannot exceed the size of the memory table. The "largest free region" gives an indication of
memory fragmentation. A typical SHOW MEMORY/FREE output looks as below:

total memory table slots: 150

total memory blocks: 500

memory block size:1600

number of free memory blocks: 439

largest free region: 439

number of free regions: 1

free memory table slots: 149

SHOW MEMORY/PERMANENT
Lists the variables cached in memory and cataloged as permanent. These variables will not be

deleted even when memory space is needed. They become cataloged in memory as permanent
when the LOAD/PERMANENT command is used.

SHOW MEMORY/TEMPORARY
Lists the variables cached in memory and cataloged as temporary (they may be deleted when
memory capacity is needed).

Ref Sec33.10. SHOW MODE

Shows the names, states and arguments of the Ferret SET MODE command.

SHOW MODE [partial_mode_name1,name2,...]

Example:

yes? SHOW MODE VERIFY,META

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

Ref Sec33.11. SHOW MOVIE

Shows the current state of SET MOVIE. This state affects FRAME and graphics commands
specified with the /FRAME qualifier.

yes? SHOW MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes
only and has no effect.

Ref Sec33.12. SHOW QUERIES

Queries are a vehicle for communication between Ferret and a stand-alone interface program.
They are not supported for general use.

Ref Sec33.13. SHOW REGION

Shows the current default region or the named region.

yes? SHOW REGION[/ALL] [region_name]

The region displayed is formatted appropriately for the axes of the last data accessed. For
example, suppose the region along the Y axis was specified as Y=5S:5N. Then if the Y axis of
the last data accessed is in units of degrees-latitude the Y location is shown as Y=5S:5N but if
the Y axis of the last data accessed is "ABSTRACT" then the Y location is shown as Y=-5:5.

Ref Sec33.14. SHOW SYMBOL

/ALL

Shows the value of one or more symbols (string variables).

yes? SHOW SYMBOL[/qualifier] [symbol_name]

If no qualifier or symbol name is given then all defined symbols are listed. SHOW SYMBOL
will accept partial names such as

yes? SHOW SYMBOL *lab*
 MY_X_LABEL = "Sample Number"
 LABEL_2 = "Station at 23N"

Parameters

The parameter may be the name of a symbol, with * replacing part of the string as above.

Command qualifiers for SHOW SYMBOL:

SHOW SYMBOL/ALL

Lists all symbols that are defined.

Ref Sec33.15. SHOW TRANSFORM

Shows the available transformations, including regridding transformations.

yes? SHOW TRANSFORM

Note: This is the most reliable way to view transformations. The output of this command will
be current even when this manual is out of date.

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

Ref Sec33.16. SHOW VARIABLES

/ALL /DATASET /DIAGNOSTIC /USER

Lists diagnostic or user-defined variables.

SHOW VARIABLES[/qualifier] [partial_name]

Examples:

yes? SHOW VARIABLES !all user-defined variables

yes? SHOW VAR/DIAG Q !all diagnostic vars beginning with Q

Command qualifiers for SHOW VARIABLES:

SHOW VARIABLES/ALL
Lists both diagnostic variables (available for the COX/PHILANDER model) and user-defined
variables.

SHOW VARIABLES/DATA_SET
Lists variables associated with the named dataset by DEFINE VARIABLE/DATA_SET=

SHOW VARIABLES/DIAGNOSTIC
This is an unsupported (obsolete) qualifier. It lists "diagnostic" variables available for the
COX/PHILANDER model.

SHOW VARIABLES/USER
Lists expressions that have been defined by the user as new variables. This is the default
behavior of SHOW VARIABLES with no qualifier.

Ref Sec33.17. SHOW VIEWPORT

Shows one or more of the currently defined viewports. Omitting an argument gives
information on all viewports.

yes? SHOW VIEWPORT [view_name1,view_name2,...]

Example:

yes? DEFINE VIEWPORT/AXES/XLIM=0:0.5/YLIM=0.3:0.8 leftmid

yes? SHOW VIEWPORT left*

name text xlimits ylimits mode
LEFT 1.00 0.00,0.50 0.00,1.00 edges
LEFTMID 0.50 0.00,0.50 0.30,0.80 axes

 current viewport is NONE

This command shows the pre-defined viewport LEFT, and our user-defined viewport named
LEFTMID. Under Column 1, text, is the setting for scaling the size of text. The xlimits and
ylimits columns are the edges of the viewport. Mode takes the value edges for the default
setting where the viewport limits include space for margins around the plot axes, or axes if the
viewport was defined with the /axes qualifier, indicating that the limits define the location of
the plot axes.

The qualifier /ALL may be used with this command but exists merely for compatibility
reasons and has no effect.

Ref Sec33.18. SHOW WINDOWS

Lists open window numbers and indicates which is the active one.

yes? SHOW WINDOWS

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

Ref Sec34. SPAWN

Executes a command line (Unix shell) command from within Ferret.

yes? SPAWN unix_shell_command

Example:

yes? SPAWN rm -f file.dat

Also, "SPAWN shell_name" allows the user to fork into an interactive shell. For example:

yes? SPAWN csh

enters the user into a c-shell. Use EXIT to return to Ferret.

Ref Sec35. STATISTICS

/I/J/K/L X/Y/Z/T /D /BRIEF

Computes summary statistics about the data specified.

yes? STATISTICS[/qualifiers] expression_1 , expression_2 , ...

The statistics include:

● the size and shape of the region
● total number of data values in the region specified
● number of data values flagged as bad data
● minimum value
● maximum value
● mean value (arithmetic mean—not weighted by grid spacing)

● standard deviation (also not weighted by grid spacing)

All values are reported to 5 significant digits.

STATISTICS interacts with the current context exactly as the commands CONTOUR, PLOT
and LIST do.

Parameters

Expressions may be anything described under Expressions. If multiple variables or expressions
are specified they are treated in sequence. The expression(s) are inferred from the current
context if omitted from the command line.

Command qualifiers for STATISTICS:

STATISTICS/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when computing statistics about the expression(s).

STATISTICS/D=
Specifies the default data set to be used when computing statistics about the expression(s).

STATISTICS/BRIEF
Produces a shorter listing involving less computation.

Ref Sec36. UNALIAS

Alias for CANCEL ALIAS (p. 299).

Ref Sec37. USE

The USE command is an alias for SET DATA/FORMAT=cdf. (p. 369)

All qualifiers and restrictions are identical to SET DATA/FORMAT=cdf. If no filename
extension is given, ".cdf" is assumed.

Example:

yes? USE test

 is equivalent to

yes? SET DATA/FORMAT=cdf test

Ref Sec38. USER

Executes a user-written extension to the Ferret program.

yes? USER[/COMMAND=] expression_1 , expression_2, ...

The USER command is a means of incorporating custom changes in Ferret. It is currently
supported only by special request to the Ferret developers. Two special features are currently
accessible through the USER command—objective analysis and scattered sampling of grids.
These commands are superceded with Version 5.0 by the functionality available through
 external functions.

We recommend the user access objective analysis via the script objective.jnl. The scattered
sampling feature is used in the polar plotting GO tools (try "GO polar_demo" at the Ferret
prompt).

Ref Sec38.1. Objective analysis

(Note: see the version 4.4 documentation for an older way of gridding (X,Y, value) triples onto
a grid)

To grid a set of (X, Y, value) triples onto a grid of specified resolution, sometimes called
Objective analysis, use one of the family of "scat2grid" external functions. See the description
of these functions starting at p. 87.

yes? SHOW FUNCTION/EXTERNAL scat*

The X, Y, and F(X,Y) are lists of locations and a value associated with each location. Define X
and Y axes of the desired the grid and call the function to interpolate these points to the grid.

Say you have a set of latitudes, longitudes, and samples of a quantity N03 at those points, and
that these are in the variables my_lat, my_lon, and n03.

yes? DEFINE AXIS/X=170W:120W:5 xax5
yes? DEFINE AXIS/Y=0:40N:5 yax5
yes? LET n03_reg = scat2gridgauss_xy(my_lat, my_lon, n03, xax5, yax5,
2.,2.,2.,2.)
yes? SHADE n03_reg

See also the example in the demo script,

yes? go objective_analysis_demo

Ref Sec38.2. Scattered sampling

Note: there was an older way of doing scattered sampling; see section 33.2 in the version 4.4
documentation)

Ferret functions are available for sampling a gridded data field. See

yes? SHOW FUNCTION sample*

SAMPLEI(DAT_TO_SAMPLE,I_INDICES)
SAMPLEJ(DAT_TO_SAMPLE,J_INDICES) ! These sample a gridded field,
returning
SAMPLEK(DAT_TO_SAMPLE,K_INDICES) ! data at a set of grid points along an
SAMPLEL(DAT_TO_SAMPLE,L_INDICES) ! axis

SAMPLEIJ(DAT_TO_SAMPLE,XPTS,YPTS) ! Returns data sampled at a 2-
dimensional
 ! subset of its grid points

SAMPLET_DATE(DAT_TO_SAMPLE,YR,MO,DAY,HR,MIN,SEC) ! Returns data sampled
by
 ! interpolating to one or more times

SAMPLEXY(DAT_TO_SAMPLE,XPTS,YPTS) ! Returns data sampled at a set of (X,Y)
 ! points, i.e., a ship track or some
 ! other path, using linear interpolation

Examples of the use of these functions are in ef_sort_demo.jnl

Ref Sec39. VECTOR

/I/J/K/L /X/Y/Z/T /D /ASPECT /FRAME /LENGTH /NOAXIS /NOLABELS /OVERLAY
/PEN /SET_UP /TITLE /COLOR /TRANSPOSE /HLIMITS /XSKIP /VLIMITS /YSKIP

Produces a vector arrow plot.

VECTOR[/qualifiers] x_expr,y_expr

In a curvilinear coordinate system (map projections)

VECTOR[/qualifiers] x_expr, y_expr, xcoords, ycoords (see p. 201)

Parameters

x_expr, y_expr
Algebraic expressions (or simple variables) specifying the x components and y components of
the vector arrows. The expression pair will be inferred from the current context if omitted from
the command line.

Note 1: An alternative method is to plot a vector field with filled polygons drawn in the shape
of the vectors. In addition to representing the vectors' length and direction, the vectors may
optionally be colored according to another quantity, i.e. wind vectors colored according to the
atmospheric pressure. The scripts poly_vectors.jnl and mp_poly_vectors.jnl, included with
Ferret beginning with v5.53, set up to make such plots. poly_arrow_key.jnl draws a arrow
key. Please run the script poly_vec_demo.jnl for a demonstration of this capability. See p. for
an example figure.

Note 2: A second alternative is the plot_vectors.jnl script, which draws the vector arrows from
u, v, lon, and lat, where these are 1-dimensional or 2-dimensional variables representing the
vector components and the curvilinear coordinates.

Command qualifiers for VECTOR:

VECTOR/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

http://www.ferret.noaa.gov/Ferret/Demos/ef_sort_demo/ef_sort_demo.html

VECTOR/D=
Specifies the default data set to be used when evaluating the expression pair being plotted.

VECTOR/ASPECT
Adjusts the direction of the vectors to compensate for differing axis scaling.

yes? VECTOR/ASPECT[=aspect_ratio] x_expr, y_expr...

The size of vectors is unchanged—only the direction is modified. Under most circumstances
/ASPECT should be specified. The aspect ratio is (Y-scale/X-scale). If the plot lies in the
latitude/longitude plane the aspect ratio correction will be adjusted as a function of
COS(LATITUDE) on the plot.

For example, in a typical oceanographic XZ plane plot the vertical (Z) axis is in tens of meters
while the horizontal (X) axis is in hundreds of kilometers. This means the vertical scale is
greatly magnified in comparison to the horizontal. The /ASPECT qualifier correspondingly
magnifies the vertical component of the vector relative to the horizontal while preserving the
length of the vector. The magnification factor is documented on the plot.

If no aspect ratio is specified by the user (e.g. VECTOR/ASP with no value), then Ferret will
plot the vectors so that the two components' relative sizes shows their ratio. (In an XZ plane,
then, ocean velocity vectors will nearly always appear horizontal) .

VECTOR/FLOWLINE[/DENSITY]

As of version 5.3, VECTOR/FLOWLINE (alias FLOWLINE) draws continuous flowlines
from the vector components U and V. The qualifier /DENSITY controls the number of lines
drawn. There is also a 4-argument form of this command for drawing flowlines in
 curvilinear coordinates. Note that Ferret does not compute a stream function, but draws
a pathline integration of a 2-dimensional instantaneous flow field. In a 3-dimensional
flow field the plots are only useful as a qualitative visualization tool.

The size of the arrows indicates the speed of the flow. Lines are drawn until they intersect a
border of the region or another line.

As with the standard VECTOR command, the /ASPECT qualifier adjusts the direction of the
vectors to compensate for differing axis scaling. Under most circumstances /ASPECT should
be specified.

The underlying algorithm is used with permission from the GrADS program. Our thanks to
COLA, the Center for Ocean-Land-Atmosphere Studies, for access to this technique.

Example 1:

yes? USE coads_climatology

yes? SET REGION/x=150e:130w/y=40s:50n/l=6

yes? FLOW/ASPECT/DENSITY=4 uwnd,vwnd

Example 2:

yes? USE coads_climatology

yes? SET REGION/x=0:360/y=70s:70n/l=1

yes? go mp_lambert_cyl

yes? set grid uwnd

yes? go mp_aspect

yes? FLOW/ASPECT/NOAXIS/NOLAB uwnd, vwnd, x_page, y_page

yes? go mp_fland; go mp_graticule

VECTOR/FRAME
Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE. In general the FRAME command (p. 331) is more flexible and we
recommend its use rather than this qualifier.

VECTOR/LENGTH=
Controls the size of vectors.

yes? VECTOR/LENGTH[=value_of_standard]

If the /LENGTH qualifier is omitted Ferret automatically selects reasonable vector lengths. To
reuse the vector length from the last VECTOR plot use VECTOR/LENGTH.

To specify the vector lengths manually use the value_of_standard argument. This associates
the value "val" with the standard vector length, normally ½ inch. Note that the PPLUS

command VECSET can be used to modify the length of the standard vector. This is also the
length that is displayed in the vector key.

Example:

yes? VECTOR/LENGTH=100 U,V

Creates a vector arrow plot of velocities with ½ inch vectors for speeds of 100.

VECTOR/NOAXIS
Suppresses all axis lines, tics, and labeling so that no box appears surrounding the contour plot.
This is especially useful for map projection plots.

VECTOR/NOLABELS
Suppresses all plot labels.

VECTOR/NOKEY
Suppresses key at the bottom of the plot which shows the vector length. Use in conjunction
with /NOLABELS to remove the name of the variables on overlay plots..

VECTOR/OVERLAY
Causes the indicated vector field to be overlaid on the existing plot.

VECTOR/COLOR=
Specifies the line color for the vectors. The available color names are Black, Red, Green, Blue,
LightBlue, Purple, and White (not case sensitive), corresponding to the /PEN values 1-6,
respectively. (/COLOR also accepts numerical values.). Note that White is only available for
the default THICKNESS=1.

yes? VECTOR/PEN=green x_expr, y_expr

VECTOR/PEN=
Specifies the line style for the vectors. /PEN= takes the same arguments as the /LINE=
qualifier for command PLOT. See command PLOT/LINE= (p. 348). "n" ranges from 1 to 18.

yes? VECTOR/PEN=n x_expr, y_expr

VECTOR/SET_UP
Performs all the internal preparations required by program Ferret for vector plots but does not
actually render output. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL VECTOR command. This permits plot customizations that

are not possible with Ferret command qualifiers. See the chapter "Customizing Plots" (p. 165).

Note that when the /SETUP qualifier is used the /XSKIP and /YSKIP qualifiers are ignored. In
this case, use arguments to the PPL VECTOR command to achieve the thinning.

PPL VECTOR/qualifiers,xskip,yskip

yes? PPL VECTOR/over/3,4 specifies XSKIP=3 and YSKIP=4

VECTOR/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about x_expr and y_expr.

yes? VECTOR/TITLE="title_string" x_expr, y_expr

VECTOR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is always
drawn horizontal and the Y and Z axes are drawn vertical. For Y-Z plots the Z data axis is
vertical.

VECTOR/HLIMITS=
Specifies horizontal axis limits and tic interval. Without this qualifier, Ferret selects reasonable
values.

yes? VECTOR/HLIMITS=lo:hi:increment x_expr, y_expr

The optional "increment" parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

The /HLIMITS and /VLIMITS qualifiers will retain their "horizontal" and "vertical"
interpretations in the presence of the /TRANSPOSE qualifier. Thus, the addition of
/TRANSPOSE to a plotting command mandates the interchange of "H" and "V" on the limits
qualifiers

VECTOR/VLIMITS=

Specifies the axis range and tic interval for the vertical axis. See /HLIMITS (above)

VECTOR/XLIMITS=/YLIMITS=
Note: XLIMITS and YLIMITS have been deprecated. Please use HLIMITS and VLIMITS
instead.

VECTOR/XSKIP=/YSKIP=
Draws every nth vector along the requested axis beginning with the first vector requested.

yes? VECTOR/XSKIP=nx/YSKIP=ny u,v

By default, Ferret "thins" vectors to achieve a clear plot. These qualifiers allow control over
thinning.

Note that when the /SETUP qualifier is used the /XSKIP and /YSKIP qualifiers are ignored. In
this case, use arguments to the PPL VECTOR command to achieve the thinning.

PPL VECTOR/qualifiers,xskip,yskip

yes? PPL VECTOR/over/3,4 specifies XSKIP=3 and YSKIP=4

VECTOR/AXES[=top,bottom,left,right]

Turns plotting of individual axes off and on. This replaces the use of the "PPL AXSET"
command. The syntax is

 yes? VECTOR/AXES[=top,bottom,left,right] u,v

where the arguments are 1 to turn the axis on and 0 to turn it off. For example:

yes? VECTOR/AXES=0,1,1,0 u,v ! Draws the bottom and left axes only

VECTOR/GRATICULE[=line specifiers]

(Introduced in Ferret version 5.6) Turns on graticule lines for the horizontal and vertical axes.
 These are lines across the plot at the tic marks. /GRATICULE sets both horizontal and
vertical lines; to set each separately see /HGRATICULE and /VGRATICULE, below. The
syntax is

 yes? VECTOR/GRATICULE[=line or dash,COLOR=,THICKNESS=] u,v

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to GRAT may be placed in parentheses

yes? VECTOR/GRAT u,v ! default graticules

yes? VECTOR/GRAT=(LINE,COLOR=red,THIICK=3) u,v

yes? VECTOR/GRAT=(DASH,COLOR=lightblue) u,v

yes? VECTOR/FILL/GRAT=(DASH,COLOR=white) u,v

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /GRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes.

yes? ppl axnmtc 2,2
yes? VECTOR/GRAT="LARGE(COLOR=blue,thick),SMALL(COLOR=lightblue)" u,v

VECTOR/HGRATICULE[=line specifiers]/VGRATICULE[=line specifiers]

Turns on graticule lines and sets the line characteristics of the graticule for the horizontal or
vertical axis separately. You may specify only one of /HGRAT or /VGRAT if desired. These
are lines across the plot at the tic marks. The syntax is

 yes? VECTOR/HGRATICULE[=line or dash,COLOR=,THICKNESS=]
/VGRATICULE=line or dash,COLOR=,THICKNESS=] u,v

where the default is a thin, solid black line. The line colors available are Black, Red, Green,
Blue, LightBlue, Purple, and White. The thickness codes are 1, 2, or 3 and as for plot lines,
thickness=1 is a thin line, thickness=3 is the thickest, and THICK specified with no value
defaults to thickness=2. For clarity the arguments to HGRAT may be placed in parentheses

yes? VECTOR/HGRAT/VGRAT u,v !this is equivalent to VECTOR/GRAT

yes? VECTOR/HGRAT=(LINE,COLOR=red,THIICK=3)/VGRAT=(color=green) u,v

yes? VECTOR/HGRAT=(DASH,COLOR=lightblue) u,v ! horizontal only

The above commands make settings for the large tic marks. If small tic marks are being
plotted on the axes, we can make settings for them as well using keywords SMALL and
LARGE. Place all of the arguments for the /HGRAT qualifier in double quotes. Note that the
PPL AXNMTC command sets the plotting of small tics, and that small tics are used by default
for many time axes.

yes? ppl axnmtc 2,2
yes? VECTOR/HGRAT="LARGE(COLOR=blue,thick),SMALL(COLOR=lightblue)"
/VGRAT="LARGE(COLOR=blue,thick) u,v

Ref Sec40. WHERE

The command (alias) WHERE requests mouse input from the user, using the indicated click
position to define the symbols XMOUSE and YMOUSE in units of the plotted data. This
command works only in Window 1. It does not function in other windows that have been
opened with SET WINDOW/NEW. Comments that include the digitized position are also
written to the current journal file (if open). The WHERE command can be embedded into
scripts to allow interactive positioning of color keys, boxes, lines, and other annotations.

Ref Sec41. WIRE

/I/J/K/L /X/Y/Z/T /D /FRAME /NOLABEL /OVERLAY/SET_UP /TITLE /TRANSPOSE
/VIEWPOINT /ZLIMITS /ZSCALE

Produces a wire frame representation of a two-dimensional field.

yes? WIRE[/qualifiers] expression

Parameters

The expression may be anything described in the chapter "Variables and Expressions", section
"Expressions" (p. 65). The expression will be inferred from the current context if omitted from
the command line. Multiple expressions are not permitted in a single WIRE command. The
indicated region should denote a plane (2D) of data.

Command qualifiers for WIRE:

WIRE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

Example:

The following commands will create a wire frame representation of a simple mathematical
function in two dimensions.

yes? SET REGION/I=1:80/J=1:80

yes? WIRE/VIEWPOINT=-4,-10,2 exp(-1*(((I-40)/20)^2 + ((J-40)/20)^2)))

WIRE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

WIRE/FRAME
Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE. In general the FRAME command (p. 331) is more flexible and we
recommend its use rather than this qualifier.

WIRE/NOLABEL
Suppresses all plot labels.

WIRE/OVERLAY
Causes the indicated wire frame plot to be overlaid on the existing plot.

WIRE/SET_UP
Performs all the internal preparations required by program Ferret for wire frame graphics but

does not actually render output. The command PPL can then be used to make changes to the
plot prior to producing output with the PPL WIRE command. This permits plot customizations
that are not possible with Ferret command qualifiers. See the chapter "Customizing Plots" (p.
165).

WIRE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression.

WIRE/TRANSPOSE
Causes the X and Y axes to be interchanged.

WIRE/VIEWPOINT=
Specifies a viewpoint for viewing the wire frame.

yes? WIRE/VIEWPOINT=x,y,z expression

The x,y values are specified as coordinates on the X and Y axes (though they may exceed the
axis limits). The z value is in units of the requested variable.

WIRE/ZLIMITS=
Specifies limits of Z axis for wire frame.

yes? WIRE/ZLIMITS=zmin,zmax,delta expression

The values given are in units of the requested variable. (The string given as an argument to
/ZLIMITS= is passed unmodified to the PPLUS command WIRE as the zmin and zmax
parameters.)

WIRE/ZSCALE=
Controls Z axis scaling of the 3-D plot.

yes? WIRE/ZSCALE=s expression

The default value is equivalent to (ymax-ymin)/(zmax-zmin) (i.e., the aspect ratio of the Z
axis to the Y axis). This qualifier is identical to the PPLUS VIEW command parameter of the
same name.

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

GLOSSARY

ABSTRACT EXPRESSION (or VARIABLE)

An expression which contains no dependencies on any disk-resident data is referred to
as "abstract". For example, SIN(x), where x is a pseudo-variable.

AXIS

A line along one of the dimensions of a grid. The line is divided into n points, or more
precisely, n grid boxes where each grid box is a length along the axis. Adjacent grid
boxes must touch (no gaps along the axis) but need not be uniform in size (points may
be unequally spaced). Axes may be oriented (e.g. latitude, depth, ...) or simply abstract
values.

COARDS

A profile for the standardization of NetCDF files.

CONTEXT

The information needed to obtain values for a variable: the location in space and time
(points or ranges), the name of the data set (if a file variable) and an optional grid.

DATA SET

A collection of variables in one or more disk files that may be specified with a single
SET DATA command.

DESCRIPTOR

A file containing background data about a GT or TS-formatted data set: variable names,
coordinates, units and pointers to the data files. Descriptor file names normally end with
".DES".

DYNAMIC AXIS

An axis that is inferred through the use of lo:hi:delta notation. It is created and
destroyed dynamically by Ferret.

DYNAMIC GRID

A grid whose axes are inferred from a regridding operation that does not explicitly
specify all of the destination axes or specifies a destination grid that can be rendered
conformable with the originating grid only if some axes are removed or substituted.

EXPRESSION

Any valid combination of operators, functions, transformations, variables and pseudo-
variables is an expression. For example, "ABS(U)", "TEMP/(-0.03^Z)" or
"COS(TEMP[Y=0:40N@LOC:15])".

EZ DATA SET

Any disk data file that is readable by Ferret but is not in GT, TS, or NetCDF format.

FILE VARIABLE

A variable made available with the SET DATA command. File variables are data in
disk files suitable for plotting, listing, using in user-variable definitions, etc.

GKS

The "Graphical Kernel System" — a graphics programming interface that facilitates the
development of device-independent graphics code.

GO FILE or GO SCRIPT

A file of Ferret commands intended to be executed as a single command with the GO
command.

GRID

A group of 1 to 4 axes defining a coordinate space. A grid can associate the axes as
"outer products" creating a rectangular array of points. Grids may be defined with the

DEFINE GRID command or from inside data sets.

GRID BOX

A length along an axis assumed to belong to a single grid point. It is represented by a
box "middle", a box upper and a box lower limit. The "middle" need not actually be at
the center of the box but the upper limit of box m must always be the lower limit of box
m+1. (This concept is needed for integration of variables along an axis.)

GRID FILE

A file containing the definition of grids and axes — part of the GT and TS formats.

GT FORMAT

"grids at time steps" format. A direct access format using a separate descriptor file for
descriptive metadata.

METAFILE

A representation of graphics stored in a computer file. Such a file can be processed by
an interpreter program (such as Fprint) and sent to a graphics output device.

MODULO AXIS

An axis where the first point of the axis logically follows the last. Examples of this are
degrees of longitude or dates in a climatological year.

MODULO REGRIDDING

A regridding operation where the destination axis is modulo and the regridding
transform is a modulo operation. Typical usage would be to create a 12-month
climatology from a multi-year time series.

NETCDF

Network Common Data Format is an interface to a library of data access routines for
storing and retrieving scientific data. NetCDF allows the creation of data sets which are

self-describing and network transparent. As of Ferret version 2.30, NetCDF is the
suggested method of data storage.

OPERATOR

A function that is syntactically expressed in-line instead of as a name followed by
arguments. The Ferret operators are +, -, *, /, ^, AND, OR, EQ, NE, LT, LE, GT and
GE.

PSEUDO-VARIABLE

A special variable whose values are coordinates or coordinate information about a grid.
X, I, XBOX, XBOXLO and XBOXHI are the pseudo-variables for the X axis —
similarly for the other axes.

QUALIFIER

Commands and variable names may require auxiliary information supplied by
qualifiers. In the command "SHOW DATA/FULL," "/FULL" is a qualifier. In the
variable "SST[Y=20N]," "Y=20N" is a qualifier.

REGION

The location in space and time (or other axis units) at which a variable is to be
evaluated. The locations may be points or ranges. For example, T="1-JAN-
1982",Y=12S:12N describes a region in latitude and time.

REGRID

The process of converting the values of a variable from one grid to another. By default
this is done through multi-linear interpolation along all axes from the old grid to the
new. Other methods are also supported.

SUBSCRIPT

A coordinate system for referring to grid locations in which the points along an axis are
regarded as integers from 1 to the number of points on the axis. The qualifiers I, J, K,
and L are provided to specify locations by subscript.

TRANSFORMATION

An operation performed on a variable along a particular axis and specified via the
syntax "@trn". Some transformations, such as averaging (e.g. U[Z=@AVE]), reduce the
range of the variable along the axis to a single point. Others, such as taking a derivative
(e.g., V[T=@DDC]) do not.

TMAP-FORMAT

Special formats created by the Thermal Modeling and Analysis Project (TMAP). These
formats use descriptor files to store information about the variables, units, titles, and
grids for the data. Separate formats allow optimized access as time series (TS format) or
as geographical regions (GT format). As of Ferret version 2.30, NetCDF is the
suggested method of data storage.

TS FORMAT

"time step" format. A direct access format using a separate descriptor file for descriptive
metadata.

USER-DEFINED VARIABLE

A variable created with DEFINE VARIABLE (alias LET).

VARIABLE

Value defined on a grid.

VARIABLE NAME

The name by which a variable will be indicated in commands and expressions. Names
begin with letters and may include letters, digits, dollar signs, and underscores.

VARIABLE TITLE

A title string used to label plots and listed outputs of a variable.

VIEWPORT

A graphical display region which may be any subrectangle of a window. Graphical
commands (PLOT, CONTOUR, etc.) take complete control of a viewport, clearing it as
needed. A window may contain several viewports — possibly overlapping. Viewports
are defined with DEFINE VIEWPORT and controlled with SET and CANCEL
VIEWPORT.

WINDOW

A rectangular graphical display region. On a graphics terminal the terminal screen is the
one and only window available. On a graphics workstation there may be many output
windows.

WORLD COORDINATE

A coordinate system for referring to grid locations in which the points along an axis are
regarded as continuous values in some particular units (e.g., meters of depth, degrees of
latitude). The qualifiers X, Y, Z, and T are provided to specify locations by world
coordinate.

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Appendix A: EXTERNAL FUNCTIONS

A number of external functions are included with the Ferret distribution. This number is
expected to grow as Ferret developers and users contribute more functions. See the
chapter "Writing External Functions" (p. 271) for how to adapt your Fortran code to a
Ferret external function. Send your contributions to the Users Guide editor at
oar.pmel.contact_ferret@ oaa.gov .

The functions are listed in the following sections. To see what functions are available to
you, type

yes? SHOW FUNCTION/EXTERNAL

or

yes? SHOW FUNCTIONS/DETAILS/EXTERNAL function_name

gives further details on how the arguments influence the grid for the function's result.

Appendix A Sec1. COMPRESSI

COMPRESSI(DAT) Returns data, compressed along the I axis: Missing points
moved to the end

Arguments: DAT DAT: variable to compress in I

Result Axes: X ABSTRACT, same length as DAT x-axis

 Y Inherited from DAT

 Z Inherited from DAT

 T Inherited from DAT

mailto:oar.pmel.contact_ferret@noaa.gov

Note:
It is generally advisable to include explicit limits when working with functions that
replace axes. for example, consider the function compressi(v). The expression

list/i=6:10 compressi(v)

is not equivalent to

list compressi(v[i=6:10])

The former will list the 6th through 10th compressed indices from the entire i range of
variable v. the latter will list all of the indices that result from compressing v[i=6:10].

Appendix A Sec2. COMPRESSJ

COMPRESSJ(DAT) Returns data, compressed along the J axis: Missing points moved
to the end

Arguments: DAT DAT: variable to compress in J

Result Axes: X Inherited from DAT

 Y ABSTRACT, same length as DAT y-axis

 Z Inherited from DAT

 T Inherited from DAT

Note: see the note under COMPRESSI on specifying axis limits (p. 75)

Appendix A Sec3. COMPRESSK

COMPRESSK(DAT) Returns data, compressed along the I axis: Missing points
moved to the end

Arguments: DAT DAT: variable to compress in K

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z ABSTRACT, same length as DAT z-axis

 T Inherited from DAT

Note: see the note under COMPRESSI on specifying axis limits (p. 75)

Appendix A Sec4. COMPRESSL

COMPRESSL(DAT) Returns data, compressed along the L axis: Missing points
moved to the end

Arguments: DAT DAT: variable to compress in L

Result Axes: X Inherited from DAT

 Y Inherited from DAT

 Z Inherited from DAT

 T ABSTRACT, same length as DAT t-axis

Note: see the note under COMPRESSI on specifying axis limits (p. 75)

Appendix A Sec5. COMPRESSI_BY

COMPRESSI_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Abstract

 Y Inherited from VAR and MASK

 Z Inherited from VAR and MASK

 T Inherited from VAR and MASK

Compress variable "dat" along its I axis using the (multi-dimensional) mask supplied in
the second argument.

For example:

yes? LET mask = {1,,1,,1} + 0*L[l=101:102] + 0*K[k=10:11]
yes? LIST mask
 {1,,1,,1} + 0*L[L=101:102] + 0*K[K=10:11]
 1 2 3 4 5
 1 2 3 4 5
 ---- L:101 T: 101
 10 / 10: 1.000 1.000 1.000
 11 / 11: 1.000 1.000 1.000
 ---- L:102 T: 102
 10 / 10: 1.000 1.000 1.000
 11 / 11: 1.000 1.000 1.000

yes? LIST compressi_by({11,22,33,44,55},mask)
 COMPRESSI_BY({11,22,33,44,55},MASK)
 1 2 3 4 5

 1 2 3 4 5
 ---- L:101 T: 101
 10 / 10: 11.00 33.00 55.00
 11 / 11: 11.00 33.00 55.00
 ---- L:102 T: 102
 10 / 10: 11.00 33.00 55.00
 11 / 11: 11.00 33.00 55.00

Appendix A Sec6. COMPRESSJ_BY

COMPRESSJ_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Inherited from VAR and MASK

 Y Abstract

 Z Inherited from VAR and MASK

 T Inherited from VAR and MASK

Compress variable "dat" along its J axis using the (multi-dimensional) mask supplied in
the second argument. See the example under COMPRESSI_by.

Appendix A Sec7. COMPRESSK_BY

COMPRESSK_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Inherited from VAR and MASK

 Y Inherited from VAR and MASK

 Z Abstract

 T Inherited from VAR and MASK

Compress variable "dat" along its K axis using the (multi-dimensional) mask supplied in
the second argument. See the example under COMPRESSI_by.

Appendix A Sec8. COMPRESSL_BY

COMPRESSL_BY (var, mask), Compress data according to a mask

Arguments: VAR Variable to compress according to MASK

 MASK mask to use in compressing the data

Result Axes: X Inherited from VAR and MASK

 Y Inherited from VAR and MASK

 Z Inherited from VAR and MASK

 T Abstract

 Compress variable "dat" along its L axis using the (multi-dimensional) mask supplied in
the second argument. See the example under COMPRESSI_by.

Appendix A Sec9. CONVOLVEI

CONVOLVEI (VAR, WEIGHT), CONVOLVEJ (VAR, WEIGHT) ,
CONVOLVEK (VAR, WEIGHT), CONVOLVE L (VAR, WEIGHT)
Convolve I (J,K,or L)component of variable with weight function

Arguments: VAR COM: variable to convolve

 WEIGHT Weight function

Result Axes: X Inherited from VAR

 Y Inherited from VAR

 Z Inherited from VAR

 T Inherited from VAR

This function (and likewise CONVOLVEJ, CONVOLVEK, and CONVOLVEL)
convolves the variable VAR, with the weight function, wt along the X axis. Note that
the variable's context may not be of adequate size for the full calculation. Missing data
flags will be inserted where computation is impossible.

When bad data points are encountered in the component data all result data depending on
it are flagged as bad, too.

The weight function is applied at each point from i-hlen to i+hlen, where hlen is half the
length of the weight function. If the function is of even length, a zero weight is used at
the upper end. Thus if the weights were {0.1, 0.4, 0.4, 0.1} the result at point I would be
computed as the sum 0.1* COM(i-2) + 0.4* com(i-1) + 0.4* COM(i) + 0.1* COM(i+1) +
0.* COM(i+2)

Example:

Use the function to smooth a variable.

yes? LET weight = {0.25, 0.5, 0.25}
yes? LET c = SIN(x[x=0:10:.1]) + RANDU(X[X=0:10:.1])/5
yes? PLOT c
yes? PLOT/OVER/TITLE="convolvei" CONVOLVEI(c,weight)

Appendix A Sec10. CURV_TO_RECT_MAP

CURV_TO_RECT_MAP(lon_in, lat_in, grid_out, radius)

Computes mapping parameters for regridding from a curvilinear grid (see p. 232) to a
rectilinear latitude-longitude grid. The mapping is applied to data with the function
CURV_TO_RECT which interpolates the data to the rectilinear grid. This computation
uses spherical interpolation horiz-interp code written at GFDL; the Ferret developers are
responsible for its implementation as an external function.

The output of this function is a set of mapping parameters; this mapping may be saved
and applied to interpolate any field on the curvilinear grid onto the output rectangular
grid.

Arguments: lon_in Source grid longitudes, in degrees (2-D field of
longitudes describing the curvilinear grid)

 lat_in Source grid latitudes, in degrees (2-D field of
latitudes describing the curvilinear grid)

 grid_out Any variable on the output recangular lon-lat grid.
 This grid may have irregularly spaced longitude
and/or latitude axes

 radius Source points falling within radius (in degrees) of
destination point are included in the mapping to the
destination point. Described further below.

Result Axes: X Inherited from grid_out

 Y Inherited from grid_out

 Z Abstract

 T Abstract

This function does large amounts of calculation, and so runs slowly. It is recommended
that you compute mappings from the curvilinear grid to desired rectilinear grid(s) and
save them for use with your data fields. For an example of a call to this function see the
documentation for the function CURV_TO_RECT, below (p. 435).

The following figure illustrates a destination grid location (*) with a radius of influence
R. Valid source curvilinear grid locations (o) which fall within the radius of influence of
the destination point are used in the mapping. Missing source points (x) do not
contribute to the mapping. In this case, 13 valid source grid points fall within the radius
of influence.

The variable MAP, the result of a call to function CURV_TO_RECT_MAP, contains
weights and the indices of the longitudes and latitudes of the curvilinear grid that
correspond to the coordinates of the output grid. Below, in_curv_lon and in_curv_lat are
the index value from the input curvilinear grid that correspond to the longitude and
latitude of the rectangular output grid. The parameter num_neighbors is 4; the code
looks around at four neighboring grid cells.

The weights are based on the distance from the source to the result grid points. The
output variable map, then contains:

 for each m = 1, nlon_out

file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/AppA_schematic.gif

 for each n = 1, nlat_out

 for each k=1, num_neighbors

 MAP(m,n,k,1) = weight(m,n,k)

 MAP(m,n,k,2) = in_curv_lon(m,n,k)

 MAP(m,n,k,3) = in_curv_lat(m,n,k)

This may be used to determine the range of indices required in order to specify a subset
of data on a curvilinear grid. See the FAQ, s, Plotting subsets of data on a curvilinear
grid? for an outline of the procedure.

Appendix A Sec11. CURV_TO_RECT

CURV_TO_RECT (V, mapping)

Applies the mapping computed by function CURV_TO_RECT_MAP to interpolate data
from a curvilinear to a rectilinear latitude-longitude grid. This computation employs the
spherical interpolation horiz-interp code written at GFDL; the Ferret developers are
responsible for its implementation as an external function.

Arguments: V Variable on the source curvilinear grid

 mapping mapping from the source grid to a rectilinear grid

Result Axes: X Inherited from mapping

 Y Inherited from mapping

 Z Inherited from V

 T Inherited from V

This is a grid-changing function. Indicate limitson the argument axes with square
brackets []. See the note on grid-changing functions in Chapter 3 (p. 69)

Example of calls to CURV_TO_RECT_MAP and CURV_TO_RECT:

yes? use my_curvilinear_data.nc
yes? show data
 currently SET data sets:
 1> /.my_curvilinear_data.nc (default)
name title I J K L
GEOLON geographic longitude of grid 1:180 1:173
GEOLAT geographic latitude of grid 1:180 1:173
SALT salinity 1:180 1:173 1:30 1:12
AIRT air temperature 1:180 1:173 1:30 1:12

yes? ! For convenience define variables with the input grid

yes? let lonin = geolon[d=1]
yes? let latin = geolat[d=1]

yes? ! Define output grid and a variable on the output grid

yes? define axis/x=0:360:5/modulo/units=degrees xax
yes? def axis/y=0:85:5/units=degrees yax
yes? let lonlatout = y[gy=yax] + x[gx=xax]

yes? ! Compute the mapping to the rectangular grid, save to a file
yes? let map = curv_to_rect_map (lonin,latin,lonlatout,10)
yes? save/clobber/file=curv_map.nc map

yes? ! Apply the mapping to the data fields

yes? cancel var/all
yes? use curv_map.nc
yes? let out_salt = curv_to_rect(salt[d=1,K=1,L=2], map[d=2])

yes? shade out_salt

yes? let out_airt = curv_to_rect(airt[d=1], map[d=2])

yes? save/file=air_on_rect.nc out_airt

Appendix A Sec12. RECT_TO_CURV

RECT_TO_CURV (V, lon_bounds_out, lat_bounds_out, missing_allowed) Uses
Bilinear Interpolation to regrid data on a recilinear grid to a curvilinear grid.

Arguments: V Variable on the source rectilinear grid

 lon_bounds_out Destination grid longitudes, in degrees (2-D field of
longitudes describing the curvilinear grid)

 lat_bounds_out Destination grid latitudes, in degrees (2-D field of
latitudes describing the curvilinear grid)

 missing_allowed Number of missing values allowed among the 4
surrounding source cells: 0 to 3

Result Axes: X Inherited from lon_bounds_out

 Y Inherited from lat_bounds_out

 Z Inherited from V

 T Inherited from V

Example: put a rectilinear data set on a curvilinear grid for comparison.

yes? use my_curvilinear_data.nc
yes? use levitus_climatology

yes? show data
 currently SET data sets:
 1> /.my_curvilinear_data.nc
name title I J K L
GEOLON geographic longitude of grid 1:180 1:173
GEOLAT geographic latitude of grid 1:180 1:173
SALT salinity 1:180 1:173 1:30 1:12
AIRT air temperature 1:180 1:173 1:30 1:12

 2> /home/ja9/tmap/fer_dsets/data/levitus_climatology.cdf
 (default)
name title I J K L
TEMP TEMPERATURE 1:360 1:180 1:20 ...
SALT SALINITY 1:360 1:180 1:20 ...

yes? ! For convenience, define variables for arguments to
RECT_TO_CURV

yes? let lonout = geolon[d=1]
yes? let latout = geolat[d=1]

yes? let a = rect_to_curv(temp[d=2,k=1], lonout, latout, 2)
yes? shade a, lonout, latout

yes? ! Compare to a variable on the curvilinear grid

yes? shade a-airt[d=1], lonout, latout

yes? ! save the new variable for all depths, with the curvilinear

yes? ! latitude and longitude variables

yes? let temp_curv = rect_to_curv(temp[d=2], lonout, latout, 2)
yes? save/file=tcurv.nc temp_curv, lonout, latout
LISTing to file tcurv.nc

Appendix A Sec13.

Appendix A Sec14. DATE1900

DATE1900(formatted date) Scalar function: converts a formatted date into Julian days
since 1-Jan-1900.

Argument: formatted date dd-mmm-yyyy or dd-mmm-yyyy, in quotes

Result Axes: X NORMAL (no axis)

 Y NORMAL (no axis)

 Z NORMAL (no axis)

 T NORMAL (no axis)

Examples:

yes? list date1900("23-feb-2003")
 VARIABLE : DATE1900("23-feb-2003")
 37673.
yes? list date1900("2-jan-1900")
 VARIABLE : DATE1900("2-jan-1900")

 1.000

Appendix A Sec15. DAYS1900TOYMDHMS

DAYS1900TOYMDHMS(day1900) Converts Julian days since 1-Jan-1900 to values
year, month, day, hour, minute, second.

Argument: day1900 Julian day counted from 1-jan-1900

Result Axes: X Inherited from argument

 Y Inherited from argument

 Z ABSTRACT (results occupy indices 1...6)

 T Inherited from argument

This function applies only to time in the standard, Gregorian calendar.

Example:

 Create a variable based on a time axis. List the result of
DAYS1900TOYMDHMS.

yes? DEF AXIS/T=28-JAN-2003:3-FEB-2003:1/UNITS=days/T0=1-JAN-1900
timeax
yes? LET tday = T[gt=timeax]
yes? LIST days1900toymdhms(tday)
 VARIABLE : DAYS1900TOYMDHMS(TDAY)
 SUBSET : 6 by 9 points (Z-TIME)
 1 2 3 4 5 6
 1 2 3 4 5 6

28-JAN-2003 00 / 1: 2003. 1. 28. 0. 0. 0.
29-JAN-2003 00 / 2: 2003. 1. 29. 0. 0. 0.
30-JAN-2003 00 / 3: 2003. 1. 30. 0. 0. 0.
31-JAN-2003 00 / 4: 2003. 1. 31. 0. 0. 0.
01-FEB-2003 00 / 5: 2003. 2. 1. 0. 0. 0.
02-FEB-2003 00 / 6: 2003. 2. 2. 0. 0. 0.
03-FEB-2003 00 / 7: 2003. 2. 3. 0. 0. 0.

Appendix A Sec16. EOF_SPACE

EOF_SPACE(A, FRAC_TIMESER) Returns EOF (Empirical Orthogonal Function)
spacial fields(eigenfunctions) from x-y-time field

Arguments: A Variable in x, y, t; may be a function of z

 FRAC_TIMESER

Use only those time series with this fraction valid
data, e.g. 0.8 to require that 80% of the data be
present to use the data at a location.

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T ABSTRACT 1 to NEOF

The EOF functions all make the same computations, returning different portions of the
results. EOF_SPACE returns the eigenfunctions, normalized so that they have the units
of data, while time amplitude functions (TAF's) are dimensionless. Thus the sum of the
values of a given EOF = sqrt(eigenvalue), and the mean of a given TAF = 1.
 EOF_STAT returns some useful statistics: the number of EOF's which were computed
and normalized for the parameters given; the %variation explained for each
eigenfunction, and the eigenvalues.

Specifying the context of the input variable explicitly e.g.

 EOF_SPACE(A[x=20:40,y=2s:40n,l=1:58],FRAC_TIMESER)

will prevent any confusion about the region. See the note in chapter 3 (p.69)on the
context of variables passed to functions.

The functions are limited to calculating EOF's where the number of EOF's is less than
4000. This means that the number of (i,j) locations where there is data must be less than
4000. If your data has no missing (i,j) locatoins then NX* NY < 4000.

The method is an implementation of Chelton's '82 method for finding EOFs of gappy
time series. If there are no gaps, it reduces to ordinary EOFs.

The EOF analysis solves a matrix problem where the matrix is dimensioned (NX*NY)
by NT, which can quickly become quite large. The EOF functions use other workspace
as well which demands even more memory, and often memory must be increased with
the SET MEMORY command. Regridding to a coarser grid or restricting the region may
be necessary.

See the example under EOF_STAT for more on the input parameters, and see the
demonstration ef_eof_demo.jnl for examples of this function.

Note: Earlier versions of the EOF functions had one more parameter. Check the version
you have by saying

yes? SHOW FUNCTION eof*

Appendix A Sec17. EOF_STAT

EOF_STAT(A,FRAC_TIMESER) Used with EOF_SPACE and/or EOF_TFUNC.
 Return statistics related to an EOF solution for a given set of parameters. Results are on
the x-axis j = 1: # EOFscomputed and scaled, j = 2: % percentage of total variance
accounted for by each eigenvector, j = 3: the eigenvalues.

http://www.ferret.noaa.gov/Ferret/Demos/ef_eof_demo/ef_eof_demo.html

Arguments: A Variable in x, y, t; may be a function of z

 FRAC_TIMESER Use only those time series with this fraction valid
data, e.g. 0.8 to require that 80% of the data be
present to use the data at a location.

Result Axes: X ABSTRACT: 1 to NEOF

 Y ABSTRACT: 1 through 3 as outlined in the
description.

 Z NORMAL (no axis)

 T NORMAL (no axis)

Please see the discussion under EOF_SPACE, and see the demonstration
ef_eof_demo.jnl for examples of this function.

Example results:

For a simple sample function, eof_stat called to decompose it into eigenfunctions. We
 allow data to be used if the time series at the point has at least 80% valid data.

Request the number of eigenvalues computed for this choice of parameters.

yes? list/i=1/j=1 eofstat
 VARIABLE : EOF_STAT(SST[X=67W:1W,Y=11S:11N], 0.8)0
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 X : 1
 Y : 1
 284.0

Now get the percent variance explained by the eigenfunctions which were computed.

yes? list/i=1:10/j=2 eofstat

http://www.ferret.noaa.gov/Ferret/Demos/ef_eof_demo/ef_eof_demo.html

 VARIABLE : EOF_STAT(SST[X=67W:1W,Y=11S:11N], 0.8)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 10 points (X)
 Y : 2
 2
 2
1 / 1: 86.95
2 / 2: 5.82
3 / 3: 3.87
4 / 4: 1.51
5 / 5: 0.56
6 / 6: 0.38
7 / 7: 0.31
8 / 8: 0.23
9 / 9: 0.15
10 / 10: 0.11

And finally the eigenvalues associated with these eigenfunctions.

yes? list/i=1:10/j=3 eofstat
 VARIABLE : EOF_STAT(SST[X=67W:1W,Y=11S:11N], 0.8)
 DATA SET : COADS Monthly Climatology (1946-1989)
 FILENAME : coads_climatology.des
 FILEPATH : /home/ja9/tmap/fer_dsets/descr/
 SUBSET : 10 points (X)
 Y : 3
 3
 3
1 / 1: 249.4
2 / 2: 16.7
3 / 3: 11.1
4 / 4: 4.3
5 / 5: 1.6
6 / 6: 1.1
7 / 7: 0.9
8 / 8: 0.7
9 / 9: 0.4
10 / 10: 0.3

Appendix A Sec18. EOF_TFUNC

EOF_TFUNC(A, FRAC_TIMESER) Compute EOF time amplitude functions from
x-y-time field w/gaps.

Arguments: A Variable in x, y, t; may be a function of z

 FRAC_TIMESER Use only those time series with this fraction valid
data, e.g. 0.8 to require that 80% of the data be
present to use the data at a location.

Result Axes: X ABSTRACT: 1 to NEOF

 Y NORMAL (no axis)

 Z Inherited from A

 T Inherited from A

Please see the discussion under EOF_SPACE, and see the demonstration
ef_eof_demo.jnl for examples of this function.

The time amplitude functions (TAF's) are dimension less; and the mean of a given TAF
= 1. They are returned as follows: For x=1, time amplitude function corresponding to
the first eigenfunction is the time series with t=1:NT.

Appendix A Sec19. FINDHI

FINDHI(A,XRANGE,YRANGE) Find local maxima of a variable.

Arguments: A Variable in x and y, may be a function of z and/or t

http://www.ferret.noaa.gov/Ferret/Demos/ef_eof_demo/ef_eof_demo.html

 XRANGE Range in data units of the X radius in which the
function looks for maxima

 YRANGE Range in data units of the Y radius in which the
function looks for maxima

Result Axes: X ABSTRACT

 Y ABSTRACT: j=1:3

 Z Inherited from A

 T Inherited from A

The maxima are listed along the X axis: j=1 contains the X locations of the points, j=2
contains the Y coordinates of the points, and j=3 contains the function values at the
maxima.

This function looks for the maximumm gridded value in the neighborhood x+/-
XRANGE, Y+/- YRANGE. It returns only values in the interior of the region, not on
boundaries. It is an implementaion of the NCAR graphics routine "minmax"

The GO script label_lo_hi.jnl makes it easy to call this function and label and label low's
and high's with either their numerical value or the letters L and H. See the demonstration
script minmax_label_demo.jnl

Also see the script bullseye.jnl which locates and marks a "bullseye", i.e. a local
minimum or maximum in a 2-D field within a user-specified region.

Appendix A Sec20. FINDLO

FINDLO(A,XRANGE,YRANGE) Find local minima of a variable.

Arguments: A Variable in x and y, may be a function of z and/or t

 XRANGE Range in data units of the X radius in which the
function looks for minima

 YRANGE Range in data units of the Y radius in which the
function looks for minima

Result Axes: X ABSTRACT

 Y ABSTRACT: j=1:3

 Z Inherited from A

 T Inherited from A

The minima are listed along the X axis: j=1 contains the X locations of the points, j=2
contains the Y coordinates of the points, and j=3 contains the function values at the
minima.

This function looks for the minimumm gridded value in the neighborhood x+/-
XRANGE, Y+/- YRANGE. It returns only values in the interior of the region, not on
boundaries. It is an implementaion of the NCAR graphics routine "minmax".

The GO script label_lo_hi.jnl makes it easy to call this function and label and label low's
and high's with either their numerical value or the letters L and H. See the demonstration
script minmax_label_demo.jnl

Also see the script bullseye.jnl which locates and marks a "bullseye", i.e. a local
minimum or maximum in a 2-D field within a user-specified region.

Appendix A Sec21. FFT_IM

FFT_IM(A) computes the imaginary part of Fast Fourier Transform of time series in

variable A

Arguments: A Variable with a regular time axis; may be a function
of x, y, and/or z

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in cyc/(time
units from A)

The units of the returned time axis are "cycles/∆t" where ∆t is the time increment.

Even and odd N's are allowed. N need not be a power of 2. FFT_RE and FFTP_IM
assume f(1)=f(N+1), and the user gives the routines the first N pts.

Specifying the context of the input variable explicitly e.g.

LIST FFT_IM(A[l=1:58])

will prevent any confusion about the region. See the note in chapter 3 (p. 69)on the
context of variables passed to functions.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org. See the section on FFTA for more discussion (p. 78). For further
discussion of the FFTPACK code, please see the document, Notes on FFTPACK - A
Package of Fast Fourier Transform Programs at
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

Appendix A Sec22. FFT_RE

http://www.netlib.org/
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

FFT_RE(A) computes the real part of Fast Fourier Transform of time series in variable
A

Arguments: A Variable with a regular time axis; may be a function
of x, y, and/or z

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Generated by the function: frequency in cyc/(time
units from A)

The units of the returned time axis are "cycles/∆t" where ∆t is the time increment.

Even and odd N's are allowed. N need not be a power of 2. FFT_RE and FFT_IM
assume f(1)=f(N+1), and the user gives the routines the first N pts.

Specifying the context of the input variable explicitly e.g.

LIST FFT_RE(A[l=1:58])

will prevent any confusion about the region. See the note in chapter 3 (p. 69)on the
context of variables passed to functions.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org. See the section on FFTA for more discussion (p. 78). For further
discussion of the FFTPACK code, please see the document, Notes on FFTPACK - A
Package of Fast Fourier Transform Programs at
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

http://www.netlib.org/
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

Appendix A Sec23. FFT_INVERSE

FFT_INVERSE(AR, AI) computes the inverse Fast Fourier Transform of the two
frequency series AR and AI

Arguments: AR Real part of an FFT transform. Variable with a
frequency axis; may be a function of x, y, and/or
z

 AI Imaginary part of an FFT transform. Variable
with a frequency axis; may be a function of x, y,
and/or z

Result Axes: X Inherited from AR, AI

 Y Inherited from AR, AI

 Z Inherited from AR, AI

 T Abstract axis: 2*length of input frequency axes
of AR and AI

The returned time axis is abstract; the user will need to regrid it to the appropriate time
axis.

The code is based on the FFT routines in Swarztrauber's FFTPACK available at
www.netlib.org. See the section on FFTA for more discussion (p. 78). For further
discussion of the FFTPACK code, please see the document, Notes on FFTPACK - A
Package of Fast Fourier Transform Programs at
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

Appendix A Sec24. LSL_LOWPASS

http://www.netlib.org/
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html
http://ferret.pmel.noaa.gov/Ferret/Documentation/FFTpack_notes/FFTPACK_notes.html

LSL_LOWPASS(A,) Returns the argument filtered with Least Squares Lanzcos filter
in time.

Arguments: A Variable with a regular time axis; may be a function of
x, y, and/or z

 cutoff_period Cutoff period (the period at which the filter attains 1/2
amplitude)

 filter_span number of input data points used in each filtered
output point.

Result Axes: X Inherited from A

 Y Inherited from A

 Z Inherited from A

 T Inherited from A

This function low-pass filters an equally spaced time series using least-squares
approximation to the ideal low-pass filter of Bloomfield with Lanczos convergence
factors. It is very similar to subroutine LOPASS in c Chapter 6, p. 149, of Bloomfield,
P., 1976, Fourier Analysis of Time Series: An Introduction, John Wiley & Sons, New
York, 258 pp.

The main difference is that the present routine takes account o missing values in the input
time series Values near the ends and near gaps are filled with the missing value flag.

The cutoff period is he period at which the filter attains ½ amplitude or 1/4 "energy",
 measured in units of delta t. The cutoff_period must be less than or equal to N, the
length of the time axis.

The filter span is the number of input data points used in each filtered output point. A
wide filter gives a narrow frequency response transition band, but leads to ringing near
data discontinuities and loss of filtered values at the end points and surrounding missing

values. A narrow filter reduces ringing and output data loss, but gives a wider frequency
transition width, i.e. it falls off less rapidly at frequencies higher than the cutoff. The
filter transition region lies in the period range between N*cutoff_period/(N +
cutoff_period) and N*cutoff_period/(N - cutoff_period). The filter span should be an odd
integer. It is set to the next lower odd number if the input is even.

Note on tidal filtering: For hourly time series containing tidal signals, some investigators
use this filter with a 35-hour cutoff period and a filter span of xxx hours to remove at
least 99.5 % of the energy for periods less than 25 hours.

Adapted from Bloomfield by E. D. Cokelet, NOAA/PMEL, 3 Dec 1999

Appendix A Sec25. MINUTES24

MINUTES24(formatted time) Scalar function: converts a formatted time of day into
 minutes since 00:00, with fractions of minutes.

Argument: formatted time hours, minutes, seconds in the form
hh:mm:ss, in quotes.

Result Axes: X NORMAL (no axis)

 Y NORMAL (no axis)

 Z NORMAL (no axis)

 T NORMAL (no axis)

Examples:

yes? list minutes24("12:24:13")
 VARIABLE : MINUTES24("12:24:13")
 744.2
yes? list minutes24("00:30:30")

 VARIABLE : MINUTES24("00:30:30")
 30.50

Appendix A Sec26. WRITEV5D

WRITEV5D(V1,V2,V3,V4,V5,V6,V7,V8,FILENAME) Write up to 8 variables to a
Vis5D-formatted file

Arguments: V1

 V2

 V3 Up to 8 variables to write to the file

 V4

 V5

 V6

 V7

 V8

 FILENAME Name of the file to write: file type for Vis5d files is
.v5d

Result Axes: X Inherited from variables: all variables must have the
same x and y axes

 Y Inherited from variables: all variables must have the
same x and y axes

 Z Inherited from variables; the result grid will contain
the union of all the levels that are present in the
variables.

 T Inherited from variables: all variables must have the
same time axis

This function calls utility functions from the Vis5D distribution to write a Vis5D-
formatted file containing Ferret variables. TheVis5D tool is a system for interactive
visualization of large 5-D gridded data sets. It was developed by Bill Hibbard and others
at the University of Wisconsin, and can be found at

 http://www.ssec.wisc.edu/~billh/vis5d.html

There are limits in Vis5D on the size of the grid and the number of timesteps. The
function will issue an error if these limits are exceeded.

To make it more convenient to call the writev5d function, to open Vis5D from Ferret,
and to append to a Vis5D file, GO tools are available: vis5d_write.jnl, vis5d_start.jnl,
and vis5d_append.jnl. These have the filename first in their argument lists, and do not
require the user to specify all 9 arguments to the function.

Example:

Write 3 variables to a file, then append timesteps to some of the variables. There is a gap
between the times first written to the file and the times written when we call
vis5d_append; this will show up in the Vis5d tool as a gap in time. Last, start Vis5d and
open the file.

Yes? SET REGION/I=55:180/J=30:60
yes? GO vis5d_write myfile.v5d sst[L=20:30], airt[L=20:30], fcn_1

yes? GO vis5d_append myfile.v5d sst[l=34,50], airt[l=34,50]
yes? GO vis5d_start myfile.v5d

See the demonstration ef_wv5d_demo.jnl for examples of this function.

http://www.ssec.wisc.edu/~billh/vis5d.html
http://www.ferret.noaa.gov/Ferret/Demos/ef_wv5d_demo/ef_wv5d_demo.html

Appendix A Sec27. XCAT

XCAT (A, B)

Concatenates the values of two variables into one list on an abstract X axis.

Arguments: A variables to concatenate in X

 B

Result Axes: X Abstract, with length the sum of the length of the X
axes of A and B

 Y Inherited from variables A and B

 Z Inherited from variables A and B

 T Inherited from variables A and B

Note:
This is a grid-changing function. It is generally advisable to include explicit limits
when working with functions that replace axes. for example, consider the function
xcat(a,b). Look at the expressions

list/i=10:20 xcat(a,b)

and

list xcat(a[i=16:20],b[i=1:5])

Both will list 10 values in the X direction. The former will list the 10th through 20th data
values indices from the entire I range of both variables. The latter will list all of the data
that results from concatenating b[i=1:5] onto a[i=16:20].

Appendix A Sec28. YCAT

YCAT (A, B)

Concatenates the values of two variables into one list on an abstract Y axis.

Arguments: A variables to concatenate in Y

 B

Result Axes: X Inherited from variables A and B

 Y Abstract, with length the sum of the length of the Y
axes of A and B

 Z Inherited from variables A and B

 T Inherited from variables A and B

Note: This is a grid-changing function. Please see the discussion under the function
XCAT (p. 448) about specifying regions.

Appendix A Sec29. ZCAT

ZCAT (A, B)

Concatenates the values of two variables into one list on an abstract Z axis.

Arguments: A variables to concatenate in Z

 B

Result Axes: X Inherited from variables A and B

 Y Inherited from variables A and B

 Z Abstract, with length the sum of the length of the Z
axes of A and B

 T Inherited from variables A and B

Note: This is a grid-changing function. Please see the discussion under the function
XCAT (p. 448) about specifying regions.

Appendix A Sec30. TCAT

TCAT (A, B)

Concatenates the values of two variables into one list on an abstract T axis.

Arguments: A variables to concatenate in T

 B

Result Axes: X Inherited from variables A and B

 Y Inherited from variables A and B

 Z Inherited from variables A and B

 T Abstract, with length the sum of the length of the T
axes of A and B

Note: This is a grid-changing function. Please see the discussion under the function
XCAT (p. 448) about specifying regions.

Appendix A Sec31. ZAXREPLACE_AVG

ZAXREPLACE_AVG(V,ZVALS,ZAX)

 Use weighted averaging to convert between alternative monotonic Zaxes. The
weighting is done according to the portion of the source box that lies within the
destination grid cell.

The mapping between the source and destination Z axes is a function of X,Y, and or T.
Typical applications in the field of oceanography include converting from a Z axis of
layer number to a Z axis in units of depth (e.g., for sigma coordinate fields) and
converting from a Z axes of depth to one of density (for a stably stratified fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis, say,
layer number. The second argument, ZVALS, contains values in units of the desired
destination Z axis (ZAX) on the same Z axis as V — for example, depth values
associated with each vertical layer. The third argument, ZAX, is any variable defined on
the destination Z axis, often "Z[gz=zaxis_name]" is used. For an example of the
ZAXREPLACE family of functions see ZAXREPLACE (p. 77)

Arguments: V A function of depth and perhaps, x, y, and time.

 ZVALS Destination Z axis values as a fcn of source Z axis

 ZAX Variable with desired z (depth) axis points

Result Axes: X Inherited from V

 Y Inherited from V

 Z Inherited from ZAX

 T Inherited from V

Appendix A Sec32. ZAXREPLACE_BIN

ZAXREPLACE_BIN(V,ZVALS,ZAX)

Use unweighted averaging to convert between alternative monotonic Zaxes. The
function finds the source points within each destination box and averages them.

The mapping between the source and destination Z axes is a function of X,Y, and or T.
Typical applications in the field of oceanography include converting from a Z axis of
layer number to a Z axis in units of depth (e.g., for sigma coordinate fields) and
converting from a Z axes of depth to one of density (for a stably stratified fluid).

Argument 1, V, is the field of data values, say temperature on the "source" Z-axis, say,
layer number. The second argument, ZVALS, contains values in units of the desired
destination Z axis (ZAX) on the same Z axis as V — for example, depth values
associated with each vertical layer. The third argument, ZAX, is any variable defined on
the destination Z axis, often "Z[gz=zaxis_name]" is used. For an example of the
ZAXREPLACE family of functions see ZAXREPLACE (p. 77)

Arguments: V A function of depth and perhaps, x, y, and time.

 ZVALS Destination Z axis values as a fcn of source Z axis

 ZAX Variable with desired z (depth) axis points

Result Axes: X Inherited from V

 Y Inherited from V

 Z Inherited from ZAX

 T Inherited from V

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Appendix B: PPLUS Users Guide

Note: This is the Users Guide for PPLUS, also called Plot Plus, a Scientific Graphics System written by
 Donald W. Denbo April 8, 1987. Its graphics calls are the basis for Ferret's graphics. In this appendix
the PPLUS Users Guide is included unchanged, except for formatting changes and without its table of
contents or index to avoid confusion. Note that some of the information is not relevant to the purpose of
making PPLUS calls from Ferret. If there are differences, adhere to the information in the main Ferret
Users Guide. See particularly the chapter "Customizing Plots" in the Ferret Users Guide (p. 165) for
discussion of how Ferret interacts with PPLUS

Appendix B Sec1 INTRODUCTION

 Plot Plus (PPLUS) is an interactive, command-driven general-purpose program for plotting user
supplied data. PPLUS recognizes data in standard Fortran formatted, unformatted and free format
 files as well as some specialized formats (see the section on Data Formats). Data can also be entered
 from the keyboard.

The major use of PPLUS is the plotting of contour data and X-Y pairs. A very small number of
commands are required to generate a plot, making use of the many defaults available. However, it
 is also possible to control almost every aspect of the plot and to generate a final product which looks as
though it were professionally drafted. Over thirty character sets are available, including special
 Greek and Math symbols. It is possible to make a composite of several plots of different kinds (or
the same kind) on a single page and to add text information anywhere on the plot.

 PPLUS commands can be entered interactively from the keyboard or from a command file much
like a VAX/VMS command file. PPLUS command files support parameter passing, symbol
 substitution, and logic structures such as WHILE loops and block IF statements. The PPLUS
command files are simple ASCII disk files which are easily edited with any VAX/VMS editor.

Interactive help is available with the VAX/VMS command HELP PPLUS. (First, PPLUS definitions
must have been established as indicated in the Getting Started chapter.)

Appendix B Sec2 GETTING STARTED

Appendix B Sec2.1 VAX/VMS

To get a copy of this manual, type the following lines on your terminal in response to the VAX/VMS

prompt:

 $ @DISK1:[OC.SYMBOLS]PLOT5
 $ PPLUS_MANUAL
 $ PPLUS_FONTS

 The manual will be printed on the laser printer, and the PPLUS character fonts will be plotted on the
Versatec plotter.

Appendix B Sec2.2 Required Definitions

PPLUS requires several assignments and definitions to execute under VMS. The following
 should be included in your LOGIN.COM file prior to running PPLUS:

 $ @DISK1:[OC.SYMBOLS]PLOT5.COM
 $ GRAPHTERM :== xxxx,

 where xxxx describes your graphics terminal and has the following allowed values:

 VT240
 GVT+
 ZENITH
 TEK4010
 MAC
 TEK41XX
 TEK4105
 TAB

 In order to provide automatic entry and exit into and out of graphics mode you should use the
GRAPHTERM that corresponds to your terminal. If your terminal is a TEK4010 or TEK4014
 compatible, but not one of the above, then place your terminal into graphics mode before plotting
and use GRAPHTERM :== TEK4010. The execution of PLOT5.COM will define any other symbols
needed by PPLUS.

PPLUS is entered interactively by typing PPLUS (or just PPL) in response to the VAX/VMS prompt.

 Interactive help is available by typing HELP PPLUS in response to the VAX/VMS prompt. If
you are in PPLUS, help is available by typing HLP.

Appendix B Sec2.2.1 Optional Definitions

 In addition to the above, the following VAX/VMS symbols and logicals may optionally be defined by
the user:

PPL$RESET The "SAVE" file to be used by the PPLUS RESET command (logical).
 Default is PPL$EXE:PPL$RESET.DAT

ECHO Defines the file to be used to echo PPLUS commands (logical). Default is
ECHO.DAT.

PPL$STARTUP Defines an initialization or startup command command file that will be
executed each time PPLUS is entered (symbol). Default is no startup
command file.

Example definitions:

DEFINE PPL$RESET DISK1:[your-directory]your-reset.file
DEFINE ECHO your-echo.file
PPL$STARTUP :== DISK1:[your-directory]your-startup.file

Appendix B Sec3 COMMAND FORMAT

Appendix B Sec3.1 THE COMMANDS

The basic format for PPLUS commands is:

COMM[/Q1/Q2 ...][,arg1,arg2,arg3...][,sarg1,sarg2...]

where COMM is the PPL command. The numeric arguments arg1,arg2,... may be numbers in any
fortran format (e.g. 1.E-5, -6, 10.23) or blank. The character string arguments
 sarg1,sarg2,... must begin with a non-numeric character string or be enclosed in quotes ("), i.e.,
"100". If the numeric or character string arguments are blank, the input is considered null and the
default is used. Where all numeric arguments are to be defaulted, they may be omitted entirely (i.e.,
blank entries need not be made).

 PPLUS commands may have optional qualifiers (Q1, Q2 etc...). The format for qualifiers is "/value" or
"/novalue" for true or false, respectively.

All parameters must be separated by commas or blanks, except null entries which must have separating
commas. Null entries are allowed except where noted in the specific command description.

Note that if you use commas, a blank followed by a comma will be interpreted as a null entry. e.g.

PPL AXLEN 2 , 1 ! Is interpreted as PPL AXLEN 2(, null)
PPL AXLEN 2, 1 ! Is interpreted as PPL AXLEN 2,1
PPL AXLEN 2 1 ! Is interpreted as PPL AXLEN 2,1

Commands can be continued on sequential lines by inserting a "-" (minus sign) at the end of the line to
be continued.

 All commands/parameters may be entered upper or lower case. Conversion to upper case is
 performed automatically when required.

Appendix B Sec4 COMMAND SYNOPSIS

This is intended as a brief overview of the PPLUS commands. Commands are fully described in the
Command Description chapter. Examples illustrating their use are in the Beginners Guide section.

Appendix B Sec4.1 FILES

Appendix B Sec4.1.1 Data Files

These commands are used to extract the information from a file containing the data to be plotted.

RD Reads/identifies file containing data to be plotted.

SKP Skips/identifies records on the data file being read.

RWD Rewinds/identifies the data file.

FORMAT Describes the format of the data file.

VARS Locates the data to be plotted in the records of the data file.

EVAR Locates the data to be plotted in the records of the EPIC data file.

AUTOLAB Controls automatic labeling of EPIC and BIBO data plots.

Appendix B Sec4.1.2 Other Data Entry

The following commands allow data entry from a souce other than a file.

ENTER Allows data entry from the keyboard.

LINFIT Does a linear least squares fit on data already in a line and inserts the least squares line into the
next available line.

Appendix B Sec4.1.3 PPLUS Output Files

ECHO Controls echoing of PPLUS commands to a PPLUS echo file.

DEBUG Controls PPLUS debug mode (echos after symbol substitution)

PLTNME Names the output plot file.

PLTYPE Controls the format of the output plot file

Appendix B Sec4.1.4 PPLUS Command Files

@ Initiates reading of commands from a PPLUS command file.

ECHO Controls echoing of PPLUS commands to a PPLUS echo file.

DEBUG Controls PPLUS debug mode (echos after symbol substitution)

Appendix B Sec4.2 AXIS

 The following commands control axis labelling and appearance.

Appendix B Sec4.2.1 X- And Y-axis

XAXIS Controls numeric labeling and tics on the x-axis.

YAXIS Controls numeric labeling and tics on the y-axis.

AXATIC Sets number of large tics automatically for x and y.

AXLABP Locates axis labels at top/bottom or left/right of plot.

AXLEN Sets axis lengths.

AXLINT Sets label interval for axes.

AXLSZE Sets axis label heights.

AXNMTC Sets number of small tics between large tics on axes.

AXNSIG Sets no. significant digits in numeric axis labels (auto only).

AXSET Allows omission of plotting of any axis.

AXTYPE Sets axis type for x- and y-axis.

TICS Sets axis tic characteristics

XFOR Sets format of x-axis numeric labels.

YFOR Sets format of y-axis numeric labels.

XLAB Sets label of x-axis.

YLAB Sets label of y-axis.

Appendix B Sec4.2.2 Time Axis

TIME Sets start and end of time axis, start time of data.

TAXIS Sets time axis on, sets time series delta-t (minutes),orients axis.

TXLABP Establishes time axis label position (or absence).

TXLINT Specifies which tics will be labeled.

TXLSZE Sets height of time axis labels.

TXNMTC Sets number of small tics between large tics.

TXTYPE Sets type and style of time axis.

Appendix B Sec4.3 LABELS

LABS Makes a moveable label (up to 25 labels allowed).

HLABS Sets height of each moveable label.

RLABS Sets angle for each moveable label.

LABSET Sets character heights for labels.

LLABS Sets start position for a line to location of each moveable label. Draws a line from the label to
a point.

CONPRE Sets prefix for contour labels (characters, color, font).

CONPST Set suffix for contour labels (characters, color, font).

TITLE Sets and clears main plot label (without making a plot).

XLAB Sets label of x-axis.

YLAB Sets label of y-axis.

Appendix B Sec4.4 COMMAND PROCEDURES

@ Initiates reading of commands from a PPLUS command file.

DEC Decrements a counter.

INC Increments a counter.

IF Block IF statement.

ELSE Block IF statement.

ENDIF Block IF statement.

WHILE WHILE loop construct.

ENDW WHILE loop construct.

SET Sets the value of a PPLUS symbol.

SHOW Shows the value of a PPLUS symbol.

LISTSYM Lists values of defined PPLUS symbols.

Appendix B Sec4.5 COLOR AND FONTS

 Commands to change the pen number or the character font can be embedded in any labels character
string. See the preceding section for label commands and the chapter on LABELS.

@Pn Sets pen number "n" when embedded in a label, where n is less than 10

@Cnnn Sets color to number "nnn" when embedded in a label.

PEN Sets pen number for each data line.

DFLTFNT Sets default character font for all labeling.

LEV Sets pen numbers (colors) for contour plots.

Appendix B Sec4.6 PLOT APPEARANCE

 The following commands control various aspects of the plot's appearance.

ORIGIN Sets distance of plot origin from lower left corner of the box.

SIZE Sets size of entire plotting region.

BOX Controls drawing of a box around the entire plotting region.

CROSS Controls drawing of lines through the point x=0, y=0 on graph.

LINE Sets characteristics for each X-Y plot line.

MARKH Sets character size for each X-Y plot line marks.

MULTPLT Allows a composite of several plots (all kinds) on onepage.

ROTATE Rotates plot by 90 degrees on screen and plotter.

Appendix B Sec4.7 PLOT GENERATION

The following commands select the plot type and generate the plot.

PLOT Plots x-y pairs for all lines of data.

PLOTUV Makes stick plot of vector data for U,V pairs in line1.

PLOTV Makes stick plot of vector data for U in line1 and V in line2.

CONTOUR Makes contour plot.

VIEW Makes a 3-D surface plot.

VPOINT Sets the viewpoint for a 3-D surface plot.

VECTOR Makes a plot of a vector field

VELVCT Makes vector plot of U,V pairs located at X,Y locations.

MULTPLT Allows a composite of several plots (all kinds) on one page.

Appendix B Sec4.8 DATA MANIPULATION

LINFIT Does a linear least squares fit on data already in a line and inserts the least squares line into
the next available line.

TRANSXY Applies a linear transformation to variables x and y.

SMOOTH Controls smoothing of contour type data.

LIMITS Sets testing values for good data points.

WINDOW Controls windowing of data within axis bounds.

Appendix B Sec4.9 HELP

HELP VAX/VMS on-line help for PPLUS.

HLP Access on-line help from within PPLUS.

Appendix B Sec5 BEGINNERS GUIDE

To use PPLUS a minimum of preparation is required. See the chapter on Getting Started for the
symbol definitions that are required. Once this has been done PPLUS can be entered by typing PPLUS
(or just PPL) in response to the VAX/VMS prompt.

The minimum number of commands needed to read in data and then plot the data are: FORMAT
(sets the input format), SKP (a command to position the file to a given record). VARS (tells PPLUS
 how the data is arranged in each data record), RD (reads the data) and PLOT (create the plot) or
CONTOUR (create a contour plot). The name of the file containing the data can be specified with the
RD or SKP commands. Following are discussions of these commands and some examples of how
these commands are used. For more information see the Command Description chapter.

Appendix B Sec5.1 FORMAT

FORMAT informs PPLUS the type of the data file and the format the data has within this file. Valid

formats are:

 UNF -- the data is unformatted (data type REAL)

 FREE -- the data is formatted and in free form

 (xxx) -- the data is formatted with a format of xxx, where xxx is a legal FORTRAN format, i.e.,
(3F10.2)

Appendix B Sec5.2 5.2 VARS

The next command you need to know about is VARS. VARS is a complicated command because it
allows great flexibility in the organization of the data within each file record. Position of the
 characters 1, 2, and 3 within the command line indicates the position of the X, Y, and Z variables
 within the data record. The format of the command is:

 VARS,NGRP,A1, ... ,Ai

 where i is the number of data values per data group

NGRP = number of groups per record. For example, if the data file has Depth,Temperature pairs packed
3 pairs per record with a format of 3(F6.1,F6.2) then NGRP=3.

Aj = 1, 2, 3 or blank to indicate that the variable in this position within the group is to be plotted as X (Aj
= 1), Y (Aj = 2), Z (Aj = 3), or is not to be read at all (Aj = blank). An example will make this clearer.

 EXAMPLE: VARS,1,,2,1

 First arg is 1 --> there is only 1 group per record (e.g. 1 scan per line of data) in the data file

 Second arg is blank --> Variable 1 in the data record is not to be read. (A1 = blank)

 Third arg is 2 --> Variable 2 in the data record is to be plotted as Y (A2 = 2)

 Fourth arg is 1 --> Variable 3 in the data record is to be plotted as X (A3 = 1)

 No variable is to be read as Z.

The default is VARS,1,1,2 (i.e. one group per record, first variable is X, second is Y)

The following are examples of the VARS command.

VARS,1,,,1 tells PPLUS that there is one group of data per>record and to read the third number
 in the record as the X variable. Since no Y variable location has been specified the Y variable will
contain the sequence number. VARS,5,1,2 lets PPLUS know that there are five groups of data pairs
 per record. Again the X variable is first and the Ysecond.

VARS,1,1,2,3 informs PPLUS that the data is X,Y,Z triplets with one group per record. The
fact that X,Y, and Z appears tells PPLUS that the data is not on a regular grid and PPLUS should
 place it on an even grid. The method used to place the data on a regular grid and the grid itself are
determined by the RD and CONSET commands.

VARS,1,,,,2,1 tells PPLUS that there is one group of data per record where the Y variable is the
fourth number and the X the fifth number in the record.

VARS,1,3 tells PPLUS that there is one group of data per record and Z is the only variable in the
group. This is for contour data which is already gridded. The RD command defines how the data is
stored, i.e., which index varies fastest.

Appendix B Sec5.3 SKP AND RD

The name of the file containing the data to be plotted can be specified with either the SKP or the RD
command. The SKP command tells PPLUS to skip records in the data file (e.g., header records or
data which should not be plotted). Its format is SKP,N,FILE_NAME where N is the number or records
to skip, and FILE_NAME is the name of the data file and is an optional parameter. If the name of
the data file is included, the data file will be rewound before skipping. If the data file name is
omitted, the file will not be rewound before skipping.

The RD command informs PPLUS how many records to read and what file to read them from. If
you are not making a contour plot, the format of the command is RD,NX,FILE_NAME where NX is
the number of points to read from the data file and FILE_NAME is the name of the data file and is an
optional parameter. If the data file name is included, the data file will be rewound before the data is
read. If the data file name is omitted, the file will not be rewound before reading.

If you are making a contour plot, the RD command format is somewhat different. If Z is being read
 (a 3 in the VARS command), RD defines the size of the plotting grid and prompts the user for the
minimum and maximum values of X and Y to be used for the plotting grid. The format for RD is

RD,NX,NY,TYPE,FILE_NAME where NX and NY set the size of the grid for contour data read.
 Specifically, when X,Y,Z triplets are being read for contouring, the grid on which the data is plotted
can be either coarser or finer or the same as the input data. If NX=50 and NY=21, then the data will be
plotted on a grid which is 50 x 21 points (regardless of input data limits or gridding). TYPE tells
 PPLUS whether the data is stored by rows (X varies fastest) or columns (Y varies fastest) if the data is
already-gridded contour data. Finally, FILE_NAME is the data file name. If the data file name is

included, the data file will be rewound before the data is read. If the data file name is omitted, the file
will not be rewound before reading.

Appendix B Sec5.4 PLOT AND CONTOUR

PLOT or CONTOUR initiates plotting. An optional label can be included and this label will be used
to title the plot. The label must start with a non-numeric character. See following section on labels.

Appendix B Sec5.5 EXAMPLES

All the examples in this section can be typed in while running PPLUS interactively after typing
PPLUS in response to the VAX/VMS prompt. Just be sure you have first defined the PPLUS symbols
 according to the Getting Started chapter before you try to do this. Once the plot appears on your
terminal, enter <CR> to exit from graphics mode and continue. To exit from PPLUS, type EXIT.

Appendix B Sec5.5.1 Unformatted Data, X-Y Plot

The following example reads in data from an unformatted filewith one group of data per record. The
data to be plotted has Xin the second position and Y in the first. The data file has 296data points in it
but we will read only 100 at a time. The datafile also has an 8 record header that contains character data
andmust be skipped.

ppl>FORMAT UNF

ppl>VARS,1,2,1

ppl>SKP,8,PPL$EXAMPLES:DEEP3000.AVG

ppl>RD,100

ppl>PLOT,The first 100 data points

ppl>RD,100

ppl>PLOT,The second 100 data points

Appendix B Sec5.5.2 Pre-gridded Data, Contour Plot

The next example illustrates reading in data to be contoured. The data file is unformatted and
does not have any header. The data is already gridded with 1 value of Z per record. Since only Z
is read from the data file, the input grid and the plotting grid must be identical, and are specified by the
 RD command. The grid is 34 points in the x-direction and 5 points in the y-direction. The PPLUS
RD command prompts for the minimum and maximum for the X-Y contouring grid. In this
 example, the grid is 34 points in the x-direction from 10 to -6.5 units and is 51 points in the y-direction
from 0 to -500 units. PPLUS will read Z values from the data file assuming x varies fastest. This
 means that the Z values on the data file correspond to the following x,y pairs:

 x y
 10.0 0
 9.5 0
 9.0 0
 .
 .
 -6.5 0
 10.0 -10
 9.5 -10
 9.0 -10
 .
 .
 -6.5 -10
 .
 .

ppl>FORMAT,UNF

ppl>VARS,1,,3

ppl>RD,34,51,1,PPL$EXAMPLES:CTDDAT.DAT

ENTER XMIN,XMAX,YMIN,YMAX

rd>10,-6.5,0,-500

ppl>CONTOUR,A test plot for contouring

Appendix B Sec5.5.3 Ungridded Data, Contour Plot

This example shows the reading in of ungridded contour data. The data is unformatted with Y,X,Z the
order of the triplets. We define the grid for plotting to be 22 x 11 with X and Y limits of 1,22 and -

.033,.0576. Although the data file contains less than 1000 points, we can give PPLUS a much larger
number to read, and it will stop at the end-of-file without error.

ppl>FORMAT,UNF

ppl>VARS,1,2,1,3

ppl>RD,22,11,PPL$EXAMPLES:GRIDWI.FMT

ENTER NUMBER PTS TO READ

rd>1000

ENTER XMIN,XMAX,YMIN,YMAX

rd>1,22,.033,.567

ppl>CONTOUR,An example of contouring with ungridded data

Appendix B Sec5.5.4 Time Series Plot

This example demonstrates the reading in of time series data and setting up the x axis to be a time
axis. The data file contains a sequence number, which is the day of the year or Julian Day and
temperature. Since the sequence number increments by 1 for 1 day, and delta-time is 1 day by default
 in PPLUS, there is no need to include the delta-time in the TAXIS command. The TAXIS command
 tells PPLUS that the time series has a delta-time of 1440 minutes (the default) and that the time
axis is to be turned on. (The alternate form of the TAXIS command would be "taxis,1440,on".) The
TIME command tells PPLUS that the time axis will start at 0000 1 Jul 85, end at 0000 1 Dec 85, and
 that a sequence number of 1 corresponds to a time of 1200 1 Jan 85. The YLAB command sets the y-
axis label. The LIMITS command tells PPLUS to omit data where Y = 0. The VARS command is
not needed since the data is formatted with one group of data per record, with the X variable first
and the Y variable second, which is the VARS command default. The CROSS command suppresses
 the drawing of a solid line through x=0, y=0 on the plot. The BOX command suppresses the drawing
of a box around the entire plotting region. The SKP command names the data file and skips past the
5 header records at the beginning of the data file. The RD command reads the data. The PLTYPE
command sets the plotting medium to be both Tektronix compatible and binary suitable for routing to
 hardcopy devices. The PLTNME sets the name of the output plot file. The PLOT command generates
the plot. See the Command Description chapter for a full description of all PPLUS commands.

ppl>format (17x,f3.0,7x,f5.0)

ppl>taxis,on

ppl>time,W8507010000,W8512010000,W8501011200

ppl>ylab,Air Temperature

ppl>limits,0,yeq,on

ppl>cross,0

ppl>box,off

ppl>skp,5,ppl$examples:atlas.dat

ppl>rd

ppl>pltype,2

ppl>pltnme,atlas.plt

ppl>plot,ATLAS Air Temperature at 2N 165E

Additional examples are in the directory PPL$EXAMPLES in the form of PPLUS command files,
which are the files with extension .PPC. Use the VAX/VMS command "DIR
 PPL$EXAMPLES:*.PPC" to see what the file names are. You can run these command files with
 the VAX/VMS command "PPLUS PPL$EXAMPLES:xxx.PPC", where xxx is the name of the
 PPLUS command file. The file will generate a plot on your terminal. Enter a <CR> to exit from
 graphics mode and return to the VAX/VMS prompt. (Be sure that you have first defined the PPLUS
 symbols according to the Getting Started chapter before you do this.) See the chapter on Command
Files for more information about using PPLUS command files.

You can copy these PPLUS command files to your own directory with the VAX/VMS command
"COPY PPL$EXAMPLES:*.PPC []". Then you can run them with the VAX/VMS command "PPLUS
xxx.PPC", where xxx is the name of the PPLUS command file. You can experiment with PPLUS
commands by editing the PPLUS command file to change the appearance of the plot, and then run
PPLUS again with your new command file.

Appendix B Sec6 ROUTING PLOT FILES

Appendix B Sec6.1 VAX/VMS

Appendix B Sec6.1.1 Plot Files And Mom

PPLUS plot files are named ZETA.PLT by default (this can be changed with the PLTNME
 command). A graphics postprocessor called MOM is available to reformat these binary plot files and
 route them to a graphics device. MOM submits a batch job to BETA$LOPRI or BETA$BATCH.
 When the batch job has finished, the original plot files will have been renamed from file.ext to
 file.PLT_HHMMSS, and the plots queued to the appropriate device. A log file with the name
MOM_HHMMSS.LOG is placed in the original directory when the MOM option /LOG is selected.

The command is (brackets [] enclose optional information):

 MOM [arg1 [arg2 ...]]

The arguments for MOM are order independant and are separated by spaces. The arguments are:

 [F[ILE]=]file name (default ZETA.PLT)

 [D[EVICE]=]device (e.g. TEK, VER etc, default VER)

 S[CALE]=scale factor (default 1)

 G[RACE]=grace distance (inches, default = 0.25)

 W[IDTH]=width (paper width CAL only, default = 11.5)

 C[PLOT]="cplot arguments" (CPLOT parameters CAL only, default=NULL)

 [NO]ROT[ATE] (rotate the plot, default NOROT)

 [NO]CEN[TER] (center the plot, default CENTER)

 /[NO]SAVE (save the input file, default /SAVE)

 /[NO]LOG (create a batch log file, default /NOLOG)

 /SMALL, /LARGE or /TRANS (type of hard copy made, default /SMALL)

 File names which are the same as a legal device name (e.g. VER, TEK, etc.) are not allowed. The file
name can contain any wild carding that is valid with the VAX/VMS rename command. The default file
extension is .PLT.

Appendix B Sec6.1.2 Plotting Devices

VER Batch plot on Versetec V80 printer/plotter

TEK Interactive plot on Tekronix compatible terminal

CPY Batch plot on Tekronix 4691 hardcopy unit

CAL Batch plot on CALCOMP plotter

HP Batch plot on HP7550A plotter

LN03 Batch plot on TMAP1:: LN03 printer/plotter

HPT Batch plot on TMAP1:: HP7475

Appendix B Sec6.1.3 Examples

 1) $MOM question

Will cause MOM to prompt for inputs. If the CPLOT argumentis a ? you are then prompted for the
CPLOT inputs.

 2) $MOM CTD110W VER SCALE=1.25 ROTATE

Will instruct MOM to create a VERSATEC plot from the metafile CTD110W.PLT, rotate the plot
90 degrees on the paper and rescale the plot by a factor of 1.25.

 3) $MOM CAL CPLOT=""

Will have MOM create a CALCOMP plot using ZETA.PLT and cal lCPLOT with the default
parameters. If CPLOT is omitted then MOM will prompt for the CPLOT command line (omitting
CCFILE).

4) $MOM TEMP.PLT;* CAL CPLOT="/P1=BLK:.3"

Will cause MOM to send all the versions of TEMP.PLT to the CALCOMP with operator instructions to
have pen 1 be black ink pen of 0.3 mm width.

5) $MOM HP *.MYPLOT;* /TRANS

Will send all plots with extension .MYPLOT to the HP7550 plotter with operator instructions to plot
on transparencies.

Appendix B Sec7 PPLUS COMMAND FILES

Appendix B Sec7.1 INTRODUCTION

PPLUS can be run using a PPLUS command file that contains the same commands used by PPLUS
interactively. The file can have any name or extension, but the default extension is .PPC. To run a
PPLUS command file named CMD.PPC, you can enter PPLUS by typing PPLUS CMD.PPC in response
to the VAX/VMS prompt, or you can enter PPLUS in the usual way and give the PPLUS command
@CMD.PPC. (See @ in the chapter on Command Description.)

Each time PPLUS is used, an echo file (named ECHO.DAT by default) is generated. This file can
be edited (it should be renamed) with any VAX text editor and used as a PPLUS command file in
subsequent PPLUS sessions.

Appendix B Sec7.2 SYMBOL SUBSTITUTION

PPLUS allows symbol substitution in a manner similar to VAX/VMS symbols. Global and local
 symbols are supported in conjunction with nested command files and parameter passing. The SET and
SHOW commands create, modify and list the symbols. When initially entering PPLUS (i.e., at the first
command level) the symbols are global and available to all command levels. At each subsequent
command level, local symbols are created and used by default. Global symbols are used when no
local symbol exists. If the symbol name is preceded by a star (*), the global symbol will be created,
modified or substituted.

 Parameters passed via the @ command line are named P1, P2, P3, etc... just as they are in VAX/VMS.
 Symbols are recognized by PPLUS by being enclosed by single quotes. Character strings can be
enclosed in double quotes. For example:

 SET TEMP "This is a test label"
XLAB 'temp'

 will have the same effect as:

 XLAB This is a test label

Several symbols are predefined. 'DATE' and 'TIME' contain the current date and time. Date and
time formats are dd-mmm-yy and hh:mm:ss. In addition, P1 through Pn are also predefined if the
 corresponding argument was passed via the @ command. For example, the command procedure
PLOTIT.PPC could be executed in PPLUS by typing @PLOTIT 110W Temperature. Then in the
procedure PLOTIT, the symbol P1 will have the value "110W" and the symbol P2 will have the value
"Temperature".

Symbols can also be defined and used in an array format, i.e., 'P(3)' will get symbol P3 and
'label(12)' will access symbol LABEL12.

To have a single quote (') in the symbol or command line two single quotes must be used (''). To have a
double quote (") in the command line two double quotes ("") are required.

Here is a sample PPLUS command file which demonstrates some of the new, powerful PPLUS features.
 In this example, the symbol P1 has the value 110W.

 pltnme,'p1'.plt
format,(f5.0,15x,f15.0)
vars,1,1,2
skp,1,'p1'.dat
rd,60
debug,on
show p1
debug,off
plot,@TRMonthly data 1979-83 at 'P1' ('date' 'time')

The proceeding PPLUS command file (named PLOTIT.PPC) could be called repeatedly in PPLUS
 for different data files named 110W.DAT, 140W.DAT, etc. by entering the PPLUS commands
 @PLOTIT 110W, @PLOTIT 140W, etc. The resulting plot files, ECHO.DAT files and graphs
would be identified by the data file names of 110W, 140W, etc. The graph title will also include the
time and date when the graph was made.

Appendix B Sec7.3 GENERAL GLOBAL SYMBOLS

The global symbols set by PPLUS to allow information to be available in the command procedure are:

command SYMBOL COMMAND DESCRIPTION

 DATE The current date dd-mmm-yy

 PPL$COMMAND_FILE @ The current command file name.

 PPL$EOF RD,RWD,SKP "YES" if an EOF was read.

 PPL$FORMAT FORMAT The current format.

 PPL$HEIGHT SIZE Height of the box.

 PPL$INPUT_FILE RD,SKP,RWD The current input file.

 PPL$LF_A LINFIT Constant from fit y= a + b*x

 PPL$LF_A_STDEV LINFIT Standard error of A.

 PPL$LF_B LINFIT Constant from fit.

 PPL$LF_B_STDEV LINFIT Standard error of B.

 PPL$LF_R2 LINFIT Regression coefficient squared.

 PPL$LF_RES_VAR LINFIT Residual variance.

 PPL$LF_VAR LINFIT Total variance.

 PPL$LINE_COUNT - The number of the last line

 read.

 PPL$PLTNME PLTNME The name of the plot file.

 PPL$RANGE_INC %RANGE See Advanced Commands Chapter

 PPL$RANGE_HIGH %RANGE See Advanced Commands Chapter

 PPL$RANGE_LOW %RANGE See Advanced Commands Chapter

 PPL$TEKNME TEKNME The name of the tektronix file.

 PPL$VIEW_X VPOINT X viewpoint

 PPL$VIEW_Y VPOINT Y viewpoint

 PPL$VIEW_Z VPOINT Z viewpoint

 PPL$WIDTH SIZE Width of the box.

 PPL$XFACT(n) TRANSXY Xfact for line n.

 PPL$XLEN AXLEN Length of X axis.

 PPL$XOFF(n) TRANSXY Xoff for line n.

 PPL$XORG ORIGIN Distance between origin and left

 edge.

 PPL$XFIRST(n) - X value for first data point in

 line n.

 PPL$XLAST(n) - X value for last data point in

 line n.

 PPL$XMAX RD Xmax of contour grid

 PPL$XMIN RD Xmin of contour grid

 PPL$XMAX(n) - Xmax for valid data in line n.

 PPL$XMIN(n) - Xmin for valid data in line n.

 PPL$YFACT(n) TRANSXY Yfact for line n.

 PPL$YLEN AXLEN Length of Y axis.

 PPL$YOFF(n) TRANSXY Yoff for line n.

 PPL$YORG ORIGIN Distance between origin and

 bottom edge.

 PPL$YFIRST(n) - Y value for first data point in

 line n.

 PPL$YLAST(n) - Y value for last data point in

 line n.

 PPL$YMAX RD Ymax of contour grid

 PPL$YMIN RD Ymin of contour grid

 PPL$YMAX(n) - Ymax for valid data in line n.

 PPL$YMIN(n) - Ymin for valid data in line n.

 PPL$ZMAX - Zmax for valid contour data.

 PPL$ZMIN - Zmin for valid contour data.

 TIME - The current time hh:mm:ss

Appendix B Sec7.4 EPIC GLOBAL SYMBOLS

 The following global symbols set by PPLUS contain information from EPIC time series data
headers:

 SYMBOL COMMAND DESCRIPTION

 PPL$EPIC_COMMENT_DATA(n) RD Data comment from header.

 PPL$EPIC_COMMENT_FIRST(n) RD Data comment from header.

 PPL$EPIC_COMMENT_SECOND(n) RD Data comment from header.

 PPL$EPIC_DEPTH(n) RD Depth of measurement.

 PPL$EPIC_DESCRIPT(n) RD EPIC series descriptor.

 PPL$EPIC_EXPERIMENT(n) RD Experiment identifier.

 PPL$EPIC_LATITUDE(n) RD Latitude.

 PPL$EPIC_LONGITUDE(n) RD Longitude.

 PPL$EPIC_MOORING(n) RD Mooring identifier.

 PPL$EPIC_PROJECT(n) RD Project identifier.

 PPL$EPIC_XLAB(n) RD X-axis label.

 PPL$EPIC_YLAB(n) RD Y-axis label.

 The following global symbols set by PPLUS contain information from EPIC CTD data
headers:

 SYMBOL COMMAND DESCRIPTION

 PPL$EPIC_CAST(n) RD CTD Cruise and Cast identifier

 PPL$EPIC_COMMENT_FIRST(n) RD Data comment from header.

 PPL$EPIC_COMMENT_SECOND(n) RD Data comment from header.

 PPL$EPIC_DATE(n) RD CTD Cast Date (GMT)

 PPL$EPIC_LATITUDE(n) RD Latitude.

 PPL$EPIC_LONGITUDE(n) RD Longitude.

 PPL$EPIC_XLAB(n) RD X-axis label.

 PPL$EPIC_YLAB(n) RD Y-axis label.

The following global symbol set by PPLUS contains information about the EPIC data file:

 SYMBOL COMMAND DESCRIPTION

 PPL$EPIC_DATAFILE(n) RD Data file name

 PPL$INPUT_FILE RD EPIC/pointer file

Appendix B Sec7.5 COMMAND FILE LOGIC

There are several commands that enable the user to make command files more like small
 programs. These commands are similar to FORTRAN's block IF and C's WHILE loops. Commands
have been introduced that enable the user to increment and decrement a counter stored in a symbol by
one. In order to make command files more readable leading blanks and tabs are ignored.

The syntax for the PPLUS commands is given in the Command Description chapter.

EXAMPLES:

In this example, PPLUS is exited when an end-of-file is encountered by the RD command. This

illustrates both the block IF and the use of the global PPLUS symbol PPL$EOF.

RD

IF PPL$EOF .EQ. "YES" THEN

 EXIT

ENDIF

In the following example, the size of the plot is set to val by val inches if the value of the symbol val is
less than or equal to 13 otherwise the size is set to 13 x 13.

IF VAL .LE. 13 THEN

 SIZE 'VAL' 'VAL'

ELSE

 SIZE 13 13

ENDIF

In the next example, if P1 is null then P1 is set to TEMPORARY.PLT and then the plot name is set to the
value of the symbol P1.

IF P1 .EQ. "" THEN

 SET P1 TEMPORARY.PLT

ENDIF

PLTNME 'P1'

This WHILE loop results in 10 plots of 100 points each from data file DLDK1039.DAT.
(PPL$LINE_COUNT is a PPLUS defined symbol for the sequence number of the last data line read.)

SKP,DLKD1039.DAT

WHILE PPL$LINE_COUNT .LE. 10 THEN

 RD,100

 PLOT

ENDW

Appendix B Sec7.6 ARITHMETIC

Simple arithmetic can be performed using PPLUS symbols. The commands that perform these function
are SET, INC and DEC. The INC and DEC functions are primarily used to increment and
decrement counters in WHILE loops. The following WHILE loop uses the counter to set the line type to
a solid line for each line to be plotted (PPL$LINE_COUNT is a PPLUS defined symbol for the
number of the last data line read):

SET COUNT 1

WHILE COUNT .LE. PPL$LINE_COUNT THEN

 LINE,'COUNT',,0

 INC COUNT

ENDW

The SET command can be used to perform simple arithmetic on PPLUS symbols. The syntax for these
arithmetic expressions have the form:

 num1 op num2,

where op is +, -, * or / (addition, subtraction, multiplication or division) and num1 and num2 are
numbers. The numeric values must be separated from the operator op by spaces. The string will be
 used exactly as it appears if enclosed by double quotes ("). The following example centers a moveable
label 0.5 inches above the top axis (PPL$XLEN and PPL$YLEN are PPLUS symbols for the X and Y
axis lengths):

SET XPOS 'PPL$XLEN' / 2.0

SET YPOS 'PPL$YLEN' + 0.5

LABS/NOUSER,1,'XPOS','YPOS',0,"A centered label"

Appendix B Sec7.7 SYMBOL ARRAYS

As described in the SYMBOL SUBSTITUTION section, PPLUS symbols can be defined and used
as arrays. There are several general PPLUS global symbols which are also defined as arrays, such as
 PPL$XLAST(n) and PPL$YLAST(n), the last x and y values for data line n. The array index, in
parentheses, can be either a number or a PPLUS symbol. Examples will illustrate this.

The following piece of a PPLUS command file uses moveable lables to write the line number to the
right of the last point plotted for the last line read in. It uses the global PPLUS symbols
PPL$XLAST(n), PPL$YLAST(n) and PPL$LINE_COUNT.

SET XPOS 'PPL$XLAST(PPL$LINE_COUNT)'

SET YPOS 'PPL$YLAST(PPL$LINE_COUNT)'

LABS 'PPL$LINE_COUNT','XPOS','YPOS',-1,'PPL$LINE_COUNT'

The array index can also be a user defined symbol. In the following example, the array MON contains
the names of the first 3 months of the year. The graph title will be "Daily Values for the Month of
FEBRUARY".

set mon(1) "JANUARY"

set mon(2) "FEBRUARY

set mon(3) "MARCH"

.

.

.

set count 2

.

.

.

plot,"Daily Values for the Month of 'mon(count)'

The index of an array (inside parentheses) will be interpreted according to the following rules:
 1) if it is a number, that number will be used as the array index, 2) if it is not a number, it will be
interpreted as a symbol, 3) if it is in single quotes, it will be interpreted as a symbol.

Appendix B Sec7.8 SPECIAL FUNCTIONS

The functions described in this sections are all accessed with the SET command. They can be
accessed only with the SET command. The functions enable string manipulation and formatting within
 PPLUS symbol values. The PPLUS functions are similar to some of the VAX/VMS lexical functions.

The general syntax is :

SET sym $function (arg1, arg2,...),

where "sym" is the symbol set by the function and "function" is the name of the PPLUS function.
 PPLUS functions and their arguments are described in the following sections. Where function
 arguments are indicated as symbols, they must be PPLUS symbols and cannot be strings. Where
 function arguments are indicated as strings, they can be enclosed in double quotes.

Appendix B Sec7.8.1 $EDIT

The command is :

SET sym_out $EDIT (sym_in, arg1 [arg2 arg3...])

where:

sym_out = symbol set by the function

sym_in = symbol on which function is to work

arg1 = UPCASE - changes string in sym_in to upper case
 = TRIM - trims leading and trailing blanks from sym_in
 = COMPRESS - removes extra blanks from sym_in (reduces each group of blanks to a single
blank)
 = COLLAPSE - removes all blanks from sym_in

If multiple arguments are used, they can be separated by blanks, e.g., SET sym $EDIT(sym_in,UPCASE
COLLAPSE). If commas are used as separaters, the entire set of arguments must be enclosed in quotes,
e.g.,
SET sym $EDIT(sym_in,"UPCASE,COLLAPSE").

 Example:

SET S1 "depth"

SET S2 $EDIT (S1,UPCASE)

This results in S2 having the value "DEPTH".

Example:

SET S1 " depth "

SET S2 $EDIT (S2,UPCASE TRIM)

This results in S2 having the value "DEPTH".

Appendix B Sec7.8.2 $EXTRACT

 This function extracts selected characters from the input string. The first character in the string is in
position 1. The command is :

SET sym_out $EXTRACT (start,length,sym_in)

where:

sym_out = symbol set by the function

start = starting character position

length = length of character string to be extracted

sym_in = symbol on which function is to work

Example:

SET S1 "February"
SET S2 $EXTRACT(1,3,S1)

This results in S2 having the value "Feb".

Appendix B Sec7.8.3 $INTEGER

This function converts a number to integer format. The command is :

SET sym_out $INTEGER (sym_in)

where:

sym_out = symbol set by the function

sym_in = symbol on which function is to work

Example:

SET MON 1
.
.
INC MON
SET INT_MON $INTEGER(MON)

In this example, the symbol MON has been incremented, and will have the value "2.00". The symbol
INT_MON will have the value "2".

Appendix B Sec7.8.4 $LENGTH

 This function returns the length of the input string. The command is :

SET sym_out $LENGTH (sym_in)

where:

sym_out = symbol set by the function

sym_in = symbol on which function is to work

Example:

SET S1 "February"
SET S2 $LENGTH(S1)

This results in S2 having the value "8".

Appendix B Sec7.8.5 $LOCATE

 This function locates a substring in the input string. The first character in the string is in position 1.
 The command is :

SET sym_out $LOCATE (substrg,sym_in)

where:

sym_out = symbol set by the function

substrg = string to be located

sym_in = symbol function on which function is to work

Example:

SET S1 "JAN 21,1987"
SET S2 $LOCATE(",",S1)

This results in S2 having the value "7".

Appendix B Sec7.8.6 $ELEMENT

This function extracts an element from an input string in which the elements are separated by a
specified delimiter. The command is :

SET sym_out $ELEMENT (pos,delim,sym_in)

where:

sym_out = symbol set by the function

pos = position of element to be extracted

delim = delimiter

sym_in = symbol on which function is to work

Example:

SET MONTH "JAN/FEB/MAR/APR/MAY/JUN/JUL"
SET MON $ELEMENT(3,"/",MONTH)

This results in MON having the value "MAR".

Example:

SET MONTH "JAN/FEB/MAR/APR/MAY/JUN/JUL"
SET COUNT 1
WHILE COUNT .LE. 7 THEN
 SET MON(COUNT) $ELEMENT('COUNT',"/",MONTH)
 INC COUNT
ENDW

This results in MON(1) = "JAN", MON(2) = "FEB", MON(3) = "MAR", MON(4) = "APR", MON(5) =
"MAY", MON(6) = "JUN", MON(7) = "JUL".

Appendix B Sec7.9 LABELS

Appendix B Sec7.9.1 AXIS LABELING

Commands affecting the labeling of the axes are:

XAXIS Controls numeric labeling and tics on the x-axis.

YAXIS Controls numeric labeling and tics on the y-axis.

AXATIC Sets number of large tics automatically for x and y.

AXLABP Locates axis labels at top/bottom or left/right of plot.

AXLEN Sets axis lengths.

AXLINT Sets label interval for axes.

AXLSIG Sets axis label heights.

AXNMTC Sets number of small tics between large tics on axes.

AXNSIG Sets no. significant digits in numeric axis labels (auto only).

AXSET Allows omission of plotting of any axis.

AXTYPE Sets axis type for x- and y-axis.

XFOR Sets format of x-axis numeric labels.

YFOR Sets format of y-axis numeric labels.

XLAB Sets label of x-axis.

YLAB Sets label of y-axis.

The numeric axis labels are drawn such that zero will be labelled if it occurs between the low and
high axis limits. If zero does not occur, then the first large tic (from the bottom or left) will be labelled.
 The large tics are forced to occur at integer multiples of the tic interval.

Appendix B Sec7.9.2 EMBEDDED STRING COMMANDS

Fonts

All labels in PPLUS can be plotted using any one of 21 character fonts and 11 symbol fonts. The
default font is SR (Simplex Roman) and other fonts are called by preceding their two letter abbreviation
 by an @, i.e., @CI for complex itallic.

Symbol fonts are called by using the symbol number, i.e., @MA01 plots the first symbol in MATH
and @MA12 will plot the twelfth symbol. Font changes (of the form @XX) can be imbedded in any
label string (e.g., XLAB, YLAB, PLOT commands).

 @font selects "font" as the character or symbol font to be used, where the font abbreviations are listed
below.

 Character Fonts

Tables showing these fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html

SR Simplex Roman (default)

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html#_TN_Ref_viewaxes_b

DR Duplex Roman

TR Triplex Roman

CR Complex Roman

AS ASCII Simplex Roman

AC ASCII Complex Roman

CS Complex Script

TI Triplex Italic

GE Gothic English

IR Indexical complex Roman

SS Simplex Script

CI Complex Italic

II Indexical complex Italic

SG Simplex Greek

CG Complex Greek

IG Indexical complex Greek

GG Gothic German

GI Gothic Italian

CC Complex Cyrillic

AR Cartographic Roman

AG Cartographic Greek

Symbol Fonts

Tables showing these fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html

ZO Zodiac

MU Music

EL Electrical

WE Weather

MA Math

SM Simplex Math

MP Map

LM Large Math

IZ Indexical Zodiac

IM Indexical Math

CA Cartographic

A clear font command @CL is available to change the default font. The next font called after a @CL
becomes the new default font. The font is reset to the default at the start of each label. The
 command DFLTFNT can also be used to change the default font to one of your choice.

Tables showing the symbol fonts are at

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/current/ppl_symbol_fonts.htm

Control characters for the two ASCII fonts AS and AC must be preceded by an <ESC> (ascii
 code=27). For example, to superscript while using the ASCII fonts you must have <ESC> in the
label preceed the character to superscript.

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html#_TN_Ref_viewaxes_b

Appendix B Sec7.9.3 Pen Selection

The pen may also be selected by giving the change pen command @Pn, where n is the character 1-
9 and A-G. This allows the selection of up to 16 pens/colors. The color and font is reset to the
default font and previous color after the character string is drawn. The PEN command can be used to
 change the default color by typing PEN,0,default_color.

If you need to select a color index beyond the range of P1 through PG, you can use the change color
command @Cnnn where "nnn" is a 3-digit color index. (It must be 3 digits.)

Appendix B Sec7.9.4 Character Slant

 The slant used in drawing the fonts may be changed by using the command @Zn, where n is the
character 0-9 and A-G. This allows the selection of slant angles from 0 to 45 in 16 increments.
 The slant is reset to zero after the character string is drawn.

Appendix B Sec7.9.5 Subscripting, Superscripting And Back Spacing

An ^ (up arrow) imbedded in any label string will cause the next character to be drawn superscripted, an
_ (underscore) will draw it subscripted, and a \ (backslash) backspaces over the last character drawn.
 The control characters ^, _ and \ are available in the two ASCII fonts AS and AC by preceding the
 control character by an <ESC> (ASCII code=27). For example, to subscript while using the ASCII fonts
you must have <ESC>_ in the label preceed the character to subscript.

Appendix B Sec7.10 DATA FORMATS

Appendix B Sec7.10.1 SEQUENTIAL FORMATS

The format to be used in reading from a sequential file is defined by the commands FORMAT,

VARS, and RD. Some definitions are useful:

 NVAR - the number of variables per group

 NGRP - the number of groups per record

 NREC - the total number of records

For example, if the data consists of depth, u, v, t and the format is 8F10.2 (the format statement must
be for an entire record) with two groups per record, the data would look like

D U V T D U V T

and NGRP=2, NVAR=4.

If you wanted to plot D as the Y variable, T as the X then, FORMAT (8F10.2) would be the correct
 FORMAT command and VARS,2,2,,,1 would be the correct VARS command. (U and V are not read
or plotted.)

However, if the format was F10.2,30X,2F10.2,30X,F10.2 then FORMAT
 (F10.2,30X,2F10.2,30X,F10.2) and VARS,2,2,1 would be appropriate.

If the data is unformatted the meanings of NVAR and NGRP are unchanged. Unformatted data is
specified by the FORMAT command FORMAT,UNF.

Reading will automatically stop at the end of the file and properly store the data.

Appendix B Sec7.10.2 BIBO FORMAT

The BIBO data format consists of data files created using the DSF routines and a 145 word header in
the BIBO format. This data format is in the standard dsf file format for data storage.

Appendix B Sec7.10.3 EPIC FORMAT

 This is the standard format for data from the EPIC data base. The data files are binary sequential
files with at least one header of 8 80-character lines followed by data records with 1 data scan per
record. When the FORMAT,EPIC command is used, the file name specified with the RD, SKP and
RWD commands refers to the EPIC or pointer file. Variables to be read are specified with the EVAR
command. Both time series EPIC data files and CTD EPIC data files are recognized by PPLUS. The
/CTD qualifier on the FORMAT command tells PPLUS which type of EPIC data is being read.

Appendix B Sec7.10.4 DSF FORMAT

This data format is that produced by the DSF routines with the header and data in PPLUS format. The
format must be followed to ensure that PPLUS can interpret the data file read correctly.

A single data file consists of a single header record and any number of data records followed by an
EOF. The header must be either an array or other sequentially organized data set of 38 real variables.
 Below is the expected format.

 INT WORD DESCRIPTION

 1 XPTS

 3 ZMIN first four created by CLSDSF

 5 ZMAX

 7 ZMEAN

 9 XMIN minimum x value (real)

 11 XMAX maximum x value (real)

 13 KX number of x grid points (integer*4)

 15 YMIN minimum y value (real)

 17 YMAX maximum y value (real)

 19 KY number of y grid points (integer*4)

 21 ITYPE data type 0= 2-d set, 1= 1-d set (integer*4)

 23-38 LAB(16) main label hollerith (integer*2)

 39 NCH number of characters is LAB (integer*4)

 41-56 IXLAB(16) x axis label hollerith (integer*2)

 57 NXLB number of characters in IXLAB (integer*4)

 59-74 IYLAB(16) y axis label hollerith (integer*2)

 75 NYLB number of characters in IYLAB (integer*4)

All labels use SYMBEL to generate the plotted characters. The labels are optional, but if not used
they should contain blanks.

ITYPE=0

Data must be stored in a linear array as:

Z(1,1),Z(2,1),...,Z(KX,1),Z(1,2),...,...,Z(KX,KY)

or as a 2-d array where the array is dimensioned as KX,KY.

Assuming the following arrays exist, ITYPE=0 data can be created as follows: HEAD(38),Z(25,50)
NOTE: use EQUIVALENCE to set the integers in the real array.

 CALL OPNDSF(file_name,'WR',ILUN)

 CALL WRHDSF(ILUN,38,HEAD)

 CALL WRDDSF(ILUN,1250,Z)

 CALL CLSDSF(ILUN)

where file_name is the file name and ILUN is the logical unit to be used.

ITYPE=1

Data must be stored as a linear array as:

X(1),X(2),...,X(KX),Y(1),Y(2),...,Y(KX)

in this case KX= length of the series and KY must be set to 1, there must be KX of each X and Y
in the data set. Given,

HEAD(38),X(200),Y(200) KX=100 then,

 CALL OPNDSF(file_name,'WR',ILUN)

 CALL WRHDSF(ILUN,38,HEAD)

 CALL WRDDSF(ILUN,KX,X)

 CALL WRDDSF(ILUN,KX,Y)

 CALL CLSDSF(ILUN)

where KX is the number of pairs. The DSF routines are available in a user library by Task
 building with

DISK1:[DENBO.PPL]OURLIB/LIB.

Appendix B Sec7.11 ADVANCED COMMANDS

This section describes PPLUS primitive plot commands. With these commands, the user can make a
plot with several x- or y-axes. The location of each axis can be specified. To distinguish them
from the standard PPLUS commands, these commands all begin with "%".

These % commands can be entered only from a PPLUS command file, and can not be entered
interactively from the keyboard. Each command is implemented as it is read from the command file.

Specifically, when the %XAXIS command is read from a command file, an x-axis is immediately
drawn on the graph. By contrast, the standard PPLUS XAXIS command simply sets x-axis parameters
and the x-axis is not drawn on the graph until a plotting command such as PLOT is issued. The %
commands give the user great control over the graphics display, but must be used carefully. No PPLUS
error messages are issued for illegal % commands. The % commands can not be used with the
MULTPLT command. See the notes with each command description and the example at the end of this
chapter.

Command descriptions follow.

Appendix B Sec7.11.1 %OPNPLT/qualifier

Opens the plot by putting the terminal into and out of graphics mode and setting /QUIET.

 Valid qualifiers are:

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/OVERLAY which causes the plot to be overlaid without erasing the last plot.

Appendix B Sec7.11.2 %CLSPLT/qualifiers

Closes the plot by putting the terminal out of graphics mode and restoring /QUIET or /NOQUIET,
whichever was in effect when the %OPNPLT command was issued.

Valid qualifiers are:

 /[NO]WAIT

 Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and terminated by
typing a character. If an <ESC> is typed PPLUS will return from the current command level to the
lowest command level. Default = WAIT.

Appendix B Sec7.11.3 %PLTLIN,n

Plots the n-th data line. Each RD command increments the data line count by 1. Use of the
standard plotting commands (PLOT, PLOTUV, PLOTV, CONTOUR, VECTOR, and VIEW) resets the
 data line count. The %PLTLIN command does not reset the data line count. (WINDOW works.)

 n Plot line n using current scale factors.

Appendix B Sec7.11.4 %LABEL/qualifier,x,y,ipos,ang,chsiz,label

Draws a label similar to a moveable label (LABS command). There is no label number and the label
is drawn as soon as the command is read from the command file. Any number of labels may be drawn.

x x position user or inches

y y position user or inches

ipos -1 left, 0 center, +1 right justify

ang Angle at which lable is to o be drawn. (0 degrees is at 3 o'clock and positive
rotation is counter clockwise.)

chsize character size (inches)

label character string to draw

Valid qualifiers are:

/[NO]USER determines units of x and y positions. Default is /USER. If /NOUSER units are inches
from the ORIGIN. (see the ORIGIN command)

Appendix B Sec7.11.5 %RANGE,min,max,ntic

Finds axis limits for use with the %XAXIS and %YAXIS commands given the data extrema of min
and max. The axis limits and tic interval are returned in the PPLUS symbols PPL$RANGE_LOW,
PPL$RANGE_HIGH, and PPL$RANGE_INC.

min minimum value of data to be ranged. Can use PPL$XMIN(n) or
PPL$YMIN(n).

max maximum value of data Can use PPL$XMAX(n) or PPL$YMAX(n).

ntic number of large increments

PPL$RANGE_LOW new minimum range value

PPL$RANGE_HIGH new maximum range value

PPL$RANGE_INC new increment

Appendix B Sec7.11.6
%XAXIS/qualifier,xlow,xhigh,xtic,y[,nmstc][,lint][,xunit][,ipos][,csize][,frmt]

This command draws an x-axis and redefines scaling for the x-direction. The arguments xlow, xhigh,
xtic and y should not be omitted. See the %RANGE command to get default values for axis limits and
increments. If you have used %RANGE, then you can use

PPL$RANGE_LOW, PPL$RANGE_HIGH, PPL$RANGE_INC for xlow, xhigh and xtic.

xlow min value of x user

xhigh max value of x user

xtic large tic increment user

yy position user or inches

nmstc number of small tics

lint label interval (large tics)

 xunit divisor for axis label

 ipos -1 bottom, 0 none, +1 top of label

csize character size inches

 frmt axis format char*20

Valid qualifiers are:

 /[NO]USER determines units of y position. Default is /USER. If /NOUSER units are inches from the
ORIGIN. (see the ORIGIN command)

Appendix B Sec7.11.7 %YAXIS/qualifier,ylow,yhigh,ytic,x[,nmstc][,lint]
[,yunit][,ipos][,csize][,frmt]

This command draws an y-axis and redefines scaling for the y direction. The arguments ylow, yhigh,
ytic and x should not be omitted. See the %RANGE command to get default values for axis limits and
increments. If you have used %RANGE, then you can use PPL$RANGE_LOW, PPL$RANGE_HIGH,
PPL$RANGE_INC for ylow, yhigh and ytic.

ylow min value of y user

yhigh max value of y user

ytic large tic increment user

xx position user or inches

nmstc number of small tics

lint label interval (large tics)

yunit divisor for axis label

ipos -1 left, 0 none, +1 right of label

csize character size inches

frmt axis format char*20

Valid qualifiers are:

/[NO]USER determines units of y position. Default is /USER. If /NOUSER units are inches from the
ORIGIN. (see the ORIGIN command)

Example:

Here is a PPLUS command file which uses all the % routines described above. It can be found in the
directory ppl$examples (PPL$EXAMPLES:CTD4.PPC), and can be executed in PPLUS to generate a
plot.

c
c PPLUS command file to plot EPIC CTD data demonstrating multiple axis
c capability.
c
c It plots Pressure vs Temperature, Salinity, Sigma_t, Oxygen.
c
box,off
window,on
size,8,10.5
origin,,2.3
format/ctd,epic
axlint,1,1
c pltnme,ctd4.plt
c
c First plot P vs T with T axis at top. Supress bottom x axis.
c

evar,t,p
rd,ppl$examples:ctd4
%opnplt
%range/nouser 'ppl$ymin(1)','ppl$ymax(1)',5
yfor,(i7)
yaxis,'ppl$range_high','ppl$range_low','ppl$range_inc'
title

axlabp,1
axset,,0
plot
c
c Plot P vs Salinity with S axis at top above T axis.
c
evar/next sal,p
rd
set ypos 'ppl$ylen' + .7
%range/nouser 'ppl$xmin(1)','ppl$xmax(1)',4
%xaxis/nouser,'ppl$range_low','ppl$range_high','ppl$range_inc',-
'ypos',,,,+1
%pltlin,1
c
c Plot P vs Sigma_t with S_t axis at bottom
c
evar/next sig,p
rd
set ypos 0.
%range/nouser 'ppl$xmin(2)','ppl$xmax(2)',4
%xaxis/nouser,'ppl$range_low','ppl$range_high','ppl$range_inc',-
'ypos',,,,-1
%pltlin 2
c
c Plot P vs Oxygen with O axis at bottom below S_t axis.
c
evar/next ox,p
rd
set ypos 'YPOS' - .7
%range/nouser 'ppl$xmin(3)','ppl$xmax(3)',4
%xaxis/nouser,'ppl$range_low','ppl$range_high','ppl$range_inc',-
'ypos',,,,-1
%pltlin 3
c
c Now use PPLUS EPIC symbols in moveable labels for graph titles
c
set ypost 'ppl$ylen' + 1.9
%label/nouser 0,'ypost',-1,0.,.16,'ppl$epic_latitude1'
'ppl$epic_longitude1'
set ypos 'ypost' + .3
%label/nouser 0,'ypos',-1,0.,.16,'ppl$epic_cast1'
'ppl$epic_date1'
%clsplt

Appendix B Sec8 PLOT5, PPLUS DIFFERENCES

PPLUS is a greatly enhanced replacement to PLOT5. Most PLOT5 syntax and commands are
identical to PPLUS usage. However, there are the following differences and incompatabilities.

 RDCOM command has been replaced by the @ command.

 The LEV command replaces the LEVEL and CLINE commands.

In format statements and labels single quotes (') must be replaced by two single quotes (''). The same
applies to double quotes ("). See the chapter on labels.

 The LIMITS command is enhanced.

IF / ELSE / ENDIF and WHILE / ENDW logic are available in command files. The INC and DEC
 commands are available to increment and decrement symbols.

The TXLINT, TXLABP, TXLSZE, TXNMTC and TXTYPE commands should be used instead of
using the corresponding arguments in the TAXIS command.

The TIME command should be used instead of the TMIN, TMAX and TSTART commands.

NOTE : The following commands are not supported in this and future versions of PPLUS:

 TMIN, TMAX and TSTART

 LEVEL and CLINE

 RWDSEQ, READSEQ and SKPSEQ

 TAXIS will not support the obsolete arguments.

Appendix B Sec9 COMMAND DESCRIPTION

Appendix B Sec9.1 @file_name/qualifier arg1 arg2 arg3 ...

 Reads commands from the file file_name until an EOF, blank line, a RETURN command is executed
or the file ends, then reverts to the previous command level for input. Default device is SY:.
 Default extension is '.PPC'. The current command file name is placed in global symbol
PPL$COMMAND_FILE.

PPLUS can be started with a command file specified by typing $PPL file_name, where file_name is
the command file name. PPLUS will produce no screen output if called from a BATCH file. PPLUS
will terminate and not pass control back to the SYS$INPUT file.

The arguments may be any legal string. The arguments arg1,arg2,etc are SET to the local symbols P1,
P2, etc. For example:

 @command_file your_file "A label" "PLTYPE 2"

 The local symbols will be:

 P1 = your_file

 P2 = A label

 P3 = PLTYPE 2

These symbols can then be substituted into the command file.

 Qualifiers are (default in parenthesis):

 /[NO]ECHO Controls echoing to the file echo.dat during execution. (NOECHO)

 /[NO]DEBUG Sets DEBUG mode during execution. In debug mode the commands are written to the
echo file after symbol substitution has occurred. (NODEBUG)

 /[NO]QUIET Turns off messages to the terminal. (NOQUIET)

 /[NO]LOG Echos commands to terminal. (NOLOG)

 /[NO]LATCH Causes the current qualifiers to be the new default for all command levels.
(NOLATCH)

Appendix B Sec9.2 AUTO,ON/OFF

Turns on and off the automatic copying of plots while at a TEK terminal. default=OFF

Appendix B Sec9.3 AUTOLAB,ON/OFF

ON (default for BIBO and EPIC data) to get graph labels from data file headers. OFF (default for
 other data formats) for manual entry of graph labels. default=OFF

Appendix B Sec9.4 AXATIC,ATICX,ATICY

Sets the number of large tics in auto mode for X and Y axes. default=5

Appendix B Sec9.5 AXLABP,LABX,LABY

Sets the numeric and character label position for X and Y axes. -1=bottom/left of plot, 0=no label,
+1=top/right of plot. default=-1

Appendix B Sec9.6 AXLEN,XLEN,YLEN

Sets the X and Y axes length in inches. XLEN is also used as the length in inches of the time
 axis. default=5.5,4.0 The values of xlen and ylen are placed in global symbols PPL$XLEN and
PPL$YLEN.

Appendix B Sec9.7 AXLINT,LINTX,LINTY

 Sets the label interval for X and Y axes. Labels are only drawn for large tics. Default=2, i.e. every
other large tic.

Appendix B Sec9.8 AXLSZE,HGTX,HGTY

 Sets the label height for X and Y axes in inches. default=0.10 If HGTX or HGTY is negative the
numeric axis labels are multiplied by -1 before plotting.

Appendix B Sec9.9 AXNMTC,NMTCX,NMTCY

 Sets the number of small tics between large tics for X and Y axes. default=0

Appendix B Sec9.10 AXNSIG,NSIGX,NSIGY

Sets the number of significant digits in labels for auto labelling. default=2

Appendix B Sec9.11 AXSET,TOP,BOT,LEFT,RIGHT

Sets the flags controlling the plotting of the four axes. If =1 axis is ON, =0 axis is OFF. The default
for all axes is ON.

Appendix B Sec9.12 AXTYPE,TYPEX,TYPEY

Sets the axis type for X and Y axes. 1 - normal, 2 - log, 3 - inv-log. Type 3 axis draws the top/right
axis inverse and the bottom/left normal. default=1

Appendix B Sec9.13 BAUD,IB

Sets baud rate. Null entry not allowed.

B= Baud rate default=110

Appendix B Sec9.14 BOX,ON/OFF

Turns on and off the box that is drawn around the entire plotting region. default is ON.

Appendix B Sec9.15 C

Comment. This command can be used to comment your @ files. No action is done when this
command is processed. The C must be followed by at least one blank space.

Appendix B Sec9.16 CLSPLT

Closes the metacode file. Not to be confused with %CLSPLT, which is documented in the
 Advanced Commands Chapter.

Appendix B Sec9.17 CONPRE,prefix

Sets a prefix string for the numeric contour labels of up to 10 characters. For example,
CONPRE,@P2@TR will give labels using pen 2 and triplex roman font. Default = spaces.

Appendix B Sec9.18 CONPST,postfix

As CONPRE but sets up to 10 characters following the contour numeric label. For example,
CONPST,cm/sec will give contour labels like "10 cm/sec". Default = spaces.

Appendix B Sec9.19
CONSET,HGT,NSIG,NARC,DASHLN,SPACLN,CAY,NRNG,DSLAB

Sets parameters for contouring and placing random data on a grid. Must be issued before the RD
command.

HGT = height of contour labels default=.08 inches

NSIG = no. of significant digits in contour labels. default=2

 NARC = number of line segments to use to connect contour points default=1

DASHLN = dash length of dashes mode default=.04 inches

SPACLN = space length of dashes mode default=.04 inches

CAY = is the interpolation scheme. If CAY=0.0, Laplacian interpolation is used. The resulting surface
tends to have rather sharp peaks and dips at the data points (like a tent with poles pushed up into it).
 There is no chance of spurious peaks appearing. As CAY is increased, Spline interpolation
predominates over the Laplacian, and the surface passes through the data points more smoothly. The

possibility of spurious peaks increases with CAY. CAY= infinity is pure Spline interpolation. An over
relaxation process in used to perform the interpolation. A value of CAY=5.0 (the default) often gives a
good surface.

NRNG = Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
 (1.0E35). default=5

DSLAB= nominal distance between labels on a contour line. default = 5.0 inches

CONTOUR/qualifier,vcomp,label

Does a contour plot of data in buffer. Label will replace that in the current main label buffer.
 Label is optional. If either axis is log that index must be equally spaced in log-space (i.e.
 10**(xmin+dx)). Contour does not take the log of the coordinate. The contour lines will be plotted
 with the pen selected for line 1. The label cannot begin with a numeric character, i.e., 95W. You can
 plot a number by specifying a font, e.g., @SR100 meters.

Vcomp indicates which vector component to contour. Default is 1. Vcomp is to be used when a
vector field has been read in. See the VECSET and VECTOR commands.

Valid qualifiers are:

/[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.20 CROSS,ICODE

Turns on and off the drawing of a solid line through(0,0) on a plot. Optionally can draw vertical
 and horizontal lines. Draws line through (XOFF,YOFF) when either TRANSXY or LINE
 command is used to apply a transformation to the data.

 ICODE = 0 cross off
 = 1 draw through (0,0) (default)
 = 2 horizontal line through each YOFF
 = 3 vertical line through each XOFF
 = 4 horizontal and vertical through each XOFF, YOFF

Appendix B Sec9.21 DATPT,type,mark

Controls the drawing of marks on a contour plot along the x and/or y axis on a grid at the points where
the raw ungridded X,Y,Z triplets are located.

type = 0 no points drawn (default)
 = 1 points drawn along the x axis
 = 2 points drawn along the y axis
 = 3 points drawn at each raw input value

mark = 0 use the default mark (default)
 = other use the specified mark to denote the location.

The default mark is down arrow for x axis, left arrow for y axis, and pluses for type=3. (also see
MARKH)

Appendix B Sec9.22 DEBUG on/off

Turns on and off the debugging mode. In debug mode theinput lines are echoed to the ECHO.DAT
file after symbol substitution. Default = off.

Appendix B Sec9.23 DEC symbol

Decrements the value stored in symbol by one. If symbol does not exist it is created and given a
value of zero.

Appendix B Sec9.24 DELETE symbol

Deletes "symbol" from the symbol table.

Appendix B Sec9.25 DFLTFNT,font

Sets the default font used for all labelling. PPLUS initially uses Simplex Roman (SR) as the
default font. Fonts are still selectable using the font command @xx, where xx is the two letter font
code. NOTE: This command also replaces the string set by the CONPRE command with the

selected font. The default font is not saved with MULTPLT.

This command changes the environment and can only be changed back with another DFLTFNT
command or using the @CL command.

font = the new default font (no default)

Appendix B Sec9.26 DIR,arg

Prints a listing of files with names or extensions that match "arg".

Appendix B Sec9.27 ECHO,on/off

Turns on/off echoing of PPLUS commands in the echo file ECHO. Default is ON. ECHO is a logical
that can be defined prior to entering PPLUS (e.g., DEFINE ECHO echo_file.echo). Default is for
echoing to go into the file ECHO.DAT.

Appendix B Sec9.28 ENGLISH

Sets the internal conversion factors in COMPLOT to inches. This is the default condition. (see the
METRIC command)

Appendix B Sec9.29 ENTER

Allows the input of X,Y pairs from the terminal. PPLUS prompts the user with 'enter>'. Type END to
stop.

Appendix B Sec9.30 EVAR/qualifier,x-var,y-var

Specifies which EPIC variables are to be plotted as x and y when FORMAT,EPIC command has
 been given. The EPIC/pointer file is named with the RD command, and each call to RD results in
 reading another EPIC data file as indicated by the EPIC/pointer file. PPLUS can extract axis labels and
 a plot title from the data file headers. Use FORMAT/CTD,EPIC to tell PPLUS that EPIC CTD data is

 being read. Use FORMAT,EPIC to tell PPLUS that EPIC time series data is being read. See
FORMAT command description for all the EPIC defaults.

x-var = Variable to be plotted as x
y-var = Variable to be plotted as y

EVAR ? displays a list of variables possible for x-var and y-var.

Examples of variables are TIM (time), U (zonal velocity), V (meridional velocity), etc. If you want to
plot x=time and y=zonal velocity, the command would be EVAR,TIM,U. If the variable you want to
 plot is not in this list, you can specify the column number of the variable in the EPIC data file. For
example, EPIC current meter data files generally have variables
 DATE,TIME,U,V,SPEED,DIRECTION. To plot x=time and y=speed, the command would be
EVAR,TIM,5. If the x variable is specified by column number, the EVAR argument list must be
 enclosed in double quotes, (e.g., EVAR,"3,4" will plot the variable in column 3 as x and the variable in
column 4 as y).

EVAR (without arguments) will yield a plot with x=date/time and y=the first variable following
date/time on the data file for time series data. For CTD data, EVAR (without arguments) will yield a
plot with x=variable in column 2 and y=variable in column 1 (usually pressure).

Valid Qualifiers are:

 /[NO]OFFSET For time series data. Controls whether PPLUS offsets the time word so that data points
are plotted in the center of each time interval. The default is OFFSET, which is appropriate for most
EPIC time series. (EPIC time words represent the start of the time interval in most cases, such as
average data.) Use /NOOFFSET to force PPLUS to plot data points at the start of each time interval
(e.g., this would be appropriate for subsampled data). Default is OFFSET.

 /[NO]TIME For time series data. Controls whether PPLUS reads the time word from the time series
data file. The default is /NOTIME, which means that the data is evenly spaced in time, making it
unnecessary to read the time words. Use /TIME to make PPLUS read the time word for data which is
unevenly spaced in time. Default is /NOTIME (unless dt is negative, in which case the default is
/TIME).

 /[NO]NEXT /NEXT indicates that the next variable is to be read from the same data file. When
/NEXT is used, no new data file name will be read from the EPIC file. The variables indicated by the
EVAR command will be read from the last data file. This option permits overplotting several variables
from the same data file, and can be used with the commands described in the ADVANCED
COMMANDS chapter to produce a plot with multiple axes. When /NEXT is used, both x and y
variables must be specified with the EVAR command. Default is /NONEXT.

The above qualifiers will also work with the VARS command when EPIC data is being read.

EXIT Causes all output buffers to be flushed and exits the program.

FORMAT/qualifier,frmt

Allows the input of a user supplied format for formatted sequential data files. Null entry is not
allowed. The current format is in global symbol PPL$FORMAT.

frmt = a format default=(3F10.2)

FREE for free form

DSF for DSF files

BIBO for DSF files without a PPLUS header

EPIC for EPIC time series data

UNF for UNFORMATTED files.

Valid qualifier (for EPIC data only) is:

 /[NO]CTD Controls whether EPIC data is read as time series data or as CTD data. If the data is EPIC
CTD data, then the /CTD switch must be used. Default is /NOCTD.

Appendix B Sec9.31 GET,file_name

Restores options to those in effect at the time SAVE,file_name was called. file_name must be
specified.

Appendix B Sec9.32 GRID[,LINEAR]

If the argument LINEAR is omitted (default), normal gridding is used. Otherwise, if LINEAR is
 included, gridding is done by linear interpolation with the following restrictions on the data:

 1. Data must be on a grid. The grid may have irregular spacing.

 2. There cannot be gaps in the middle of the grid. Every grid point in the middle of the grid must be
specified.

 3. The grid may have ragged edges.

Must be issued before the RD command. Note that if the grid is coarser than the data, it is possible that
some of the data will not be used in the gridding process. It is best to make the grid as fine as or
finer than the data rather than coarser.

Appendix B Sec9.33 HELP,arg

Give access to the VMS help files on topic "arg".

Appendix B Sec9.34 HLABS,n,height

Sets the height in inches of the nth moveable label. The height is reset to the default (specified by the
LABSET command) by omitting the height value or clearing the labels with a LABS command. (also
see LABS, RLABS, LLABS, LABSET)

Appendix B Sec9.35 HLP,arg

Gives help on the PPLUS topic "arg".

Appendix B Sec9.36 F expression THEN

The first element of a BLOCK IF statement; the other two elements are ELSE and ENDIF. ELSE
and ENDIF are not valid in any other context. expression = argument operator argument

 argument = symbol name, number or a string enclosed by quotes

 operator = .EQ., .NE., .LT., .GT., .LE. or .GE.

The symbol name can be undefined and its value is then "" (i.e., null string).

Appendix B Sec9.37 INC sym

Increments the value stored in the symbol sym by one. If sym does not exist it is created and given a

value of one.

Appendix B Sec9.38 LABS/qualifier,n,X,Y,JST,label

Defines the nth movable label for all plots. When plotting is done, the cross hairs will come on if no
X and Y position has been specified. Typing a C will center the label at the cross hairs or typing a
R will position the label to the right of the cross hairs. By typing L or F then repositioning the cross
hairs and then typing another character a line will be drawn from the first point to the second and the
label will be drawn at the second point (if F was specified an arrow will be drawn). Any character other
than L, F, R or C will cause the the label to be drawn at the cross hairs. Null entries are not allowed
 for n or label. A comment will be inserted into the ECHO.DAT file giving the coordinates when
cross hairs are used. If n is omitted LABS is reset and all moveable labels are cleared. (also see
LABSET, HLABS, RLABS, LLABS)

n = label number (up to 25 allowed)

X = X position of label in user units (optional)

Y = Y position of label in user units (must exist if X is present)

JST = justification of label. -1 left (default), 0 center, +1 right

label = any SYMBEL compatible string

/[NO]USER determines units of x and y positions. Default is /USER. If /NOUSER units are inches
from the ORIGIN. (see the ORIGIN command)

NOTE: Units specified by the /user qualifier are also used in the LLABS command. If your terminal
does not have cross hairs, you must specify X and Y.

Appendix B Sec9.39 LABSET,HLAB1,HXLAB,HYLAB,HLABS

Sets character heights for labels. (also see LABS, RLABS, LLABS)

HLAB1 = main label default=.16 inches
HXLAB = x - label default=.12 inches
HYLAB = y - label default=.12 inches
HLABS = movable labels default=.12 inches

Appendix B Sec9.40 LEV,arg,arg,arg ...

Sets the contour levels, the contour line type, the contour line label characteristics and lets the user
edit (insert/delete) levels. Any duplicate levels will be deleted, however, each LEV command edits
the existing levels and unless requested the levels are not cleared. Maximum number of levels is 500.

 arg = () clear levels, number of automatic levels to 10.

 arg = (min,max,inc,idig) specifies the contour levels and abel type

 min = starting value for levels creation
 max = ending value for levels creation (if omitted
 only the starting level will be created)

 inc = increment used to create levels. (if omitted
 only the starting and ending levels will be
 created, if 0 the starting and ending levels
 are deleted)

 idig = 0 through 9 Number of digits after the
 decimal point in the label
 = -1 contour label plotted as an integer
 = -3 no contour label will be drawn

 arg = type(min,max,inc,ipen) sets the contour lines specified to "type"

 type = DASH sets the line type to dash
 = DARK sets the line type to dark (heavy)
 = DEL deletes the indicated levels.
 = LINE sets the line type to line (normal)
 = PEN sets the pen used for a contour line to
 "ipen". ipen=0 to use default pen.

For example, "LEV,(),(9,20,1,-1),DASH(8,20,2)" will clear the previous levels and create contours
at every integral value from 9 to 20 with the labels drawn as integers, all even valued contours
 from 8 to 20 will be drawn with dashed lines.

Appendix B Sec9.41 LIMITS,value,comparison,flag

This command sets the testing value and type of test for bad data points. X, y and z are checked and

the point will not be plotted if the test is true.

value = test value for the test

comparison = XLE test for x .le. value, default off, 0.0
 XEQ test for x .eq. value, default off, 0.0
 XGE test for x .ge. value, default on, 1.E35
 YLE test for y .le. value, default off, 0.0
 YEQ test for y .eq. value, default off, 0.0
 YGE test for y .ge. value, default on, 1.E35
 ZLE test for z .le. value, default off, 0.0
 ZEQ test for z .eq. value, default off, 0.0
 ZGE test for z .ge. value, default on, 1.E35

flag = OFF the test is disabled, otherwise the test is enabled.

If your are reading data to be contoured with ZGRID, the limits are checked only after interpolation. If
you arE using GRID,LINEAR, limits are checked before and after interpolation.

Appendix B Sec9.42
LINE,n,MARK,TYPE,XOFF,YOFF,DN1,UP1,DN2,UP2

Sets the characteristics for each of the 50 possible X-Y plot lines.

n = line number

MARK = data mark (see list at end of manual, e.g. 1 for x, 3 for +)

TYPE = type of line
 0 - line connecting points and no mark at each point
 1 - line connecting points and mark at each data point
 2 - mark end points only
 3 - only mark (no line)
 4 - dashes
 5 - dashes with mark at end points

XOFF = X offset default=0.0

YOFF = Y offset default=0.0

DN,UP = dash characteristics in inches.

Default TYPE=0 for n=1, TYPE=4 otherwise.

Appendix B Sec9.43 LINFIT,n,XIMIN,XIMAX,XOMIN,XOMAX

A linear least squares fit is performed on the data in line n and the resulting fitting line is placed in the
next available line buffer.

Example:

RD,data.fil LINFIT,1

will place the fitting line from the regression of line 1 into buffer 2.

n = line number (no default)

XIMIN = min x value for the regression domain

XIMAX = max x value for the regression domain

XOMIN = min x value for the fitting line (default=XIMIN)

XOMAX = max x value for the fitting line (default=XOMIN)

XIMIN and XIMAX default to the minimum and the maximum of the data. XOMIN and XOMAX
default to XIMIN and XIMAX, respectively. An alternate form for the command may be used when
TAXIS is ON and TSTART has been set. It is:

LINFIT,n,TIMIN,TIMAX,TOMIN,TOMAX

Where the arguments are the beginning and ending times in Woods Hole format
 WYYMMDDHHMM, i.e., W8101121800 is 12-JAN-1981 18:00. The arguments have the same
meanings and defaults as above.

The following global symbols are defined by LINFIT:

PPL$LF_R2 = regression coefficient squared

PPL$LF_A = constant for fit (y = a + b*x)

PPL$LF_A_STDEV = standard error of A

PPL$LF_B = constant for fit

PPL$LF_B_STDEV = standard error of B

PPL$LF_VAR = total variance

PPL$LF_RES_VAR = residual variance after fit

Appendix B Sec9.44 LIST,IMIN,IMAX,JMIN,JMAX,VCOMP,arg

List on the terminal the appropriate information. Null entry is not allowed if arg is not DATA. IMIN,
IMAX, JMIN, JMAX only valid if arg=DATA. Defaults are to print the total plot buffer.

IMIN= min I for CONTOUR , start pt for X-Y

IMAX= max I for CONTOUR , stop pt for X-Y

JMIN= min J for CONTOUR , start line for X-Y

JMAX= max J for CONTOUR , stop line for X-Y

VCOMP= vector component to be listed (VECTOR command)

arg= LEVELS contour levels and weights
 CONSET contour information
 DATA data currently in buffer
 DATPT contour data location before gridding
 LABELS prints the labels at the terminal
 LABSET LABSET parameters
 LINES current LINE and PEN values
 LIMITS the current values set/reset by the limits command
 PLOT gives plot information and plot file name
 READ sequential read information
 STATS min and max plus sizes of last read
 TAXIS T-axis attributes
 TICS Tic sizes and options
 TRANSXY X and Y transform values
 VECTOR Vector plotting attributes (VECTOR command)
 XAXIS X-axis attributes
 YAXIS Y-axis attributes

Appendix B Sec9.45 LISTSYM

Lists the symbols currently defined.

Appendix B Sec9.46 LLABS,n,X,Y,TYPE

Defines the starting position in user units for a line associated with the moveable labels. The end of the
line is determined from the LABS command. This command has no effect if the label is to be
 positioned with the cross-hairs. If the command is issued without coordinates the TYPE is set to
none. Fancy has an arrow head at the starting position. (also see LABS, RLABS, HLABS, LABSET)

n = label number less than 11

X = X position of line in user units

Y = Y position of line in user units

TYPE = line type. 0 no line, 1 normal line, 2 fancy line

NOTE: Units of x and y positions are determined by the /USER qualifier in the LABS command.

Appendix B Sec9.47 MARKH,n,SIZE

Sets the mark size used for plotting line number n. The mark size for line 1 is used for the marks in
the DATPT command (contouring).

n = line number (no default)

SIZE = size of mark in inches (default= 0.08)

Appendix B Sec9.48 METRIC

Sets the internal conversion factors in COMPLOT to millimeters. Default condition is inches.

MULTPLT,NX,NY

This command allows the user to plot several plots together. The individual plots are arranged in
rows and columns. The X axis length of each plot in the same column and the Y axis length of each
plot in the same row are identical. The axis lengths are specified in rows and columns. The spacings

between the rows and columns are also user controlled. If the spacing is zero the plots are placed
 together without axis labels if appropriate. There are prompts for all additional information needed.

NX = number of columns
NY = number of rows

The prompts will be:

ENTER XLEN FOR COLS 1,2,...,NX
multplt>
ENTER YLEN FOR ROWS 1,2,...,NY
multplt>
ENTER PLOT SPACINGS
LEFT BNDRY TO COL1, COL1 TO COL2,ETC...
multplt>
ROW1 TO ROW2,...,ROW NY TO BOTTOM
multplt>

Axis length and ORIGIN are reset after plotting is finished.

Appendix B Sec9.49 NLINES

Resets the the input buffer so that the next data line read will be line 1. The input buffer is normally
reset when a plot is made.

Appendix B Sec9.50 ORIGIN,XORG,YORG

Sets the distance the lower left hand corner of the plotting area is from the lower left corner of the box.
 The values of xorg and yorg are placed in the global symbols PPL$XORG and PPL$YORG.

XORG = x-distance (in) default=1.4
YORG = y-distance (in) default=1.2

Appendix B Sec9.51 PEN,n,ipen

Sets the pen to be used for line n. ipen should be in the range 1-6, subject to the limitations of the
plotting device. On the VERSATEC, pen 2 is thicker than pen 1, pen 3 is thicker than pen 4, etc. The
pen selected for line 1 will be used to draw the contour lines. (also see LEV)

n = line number. If n=0 sets the pen used to plot the axes and labels.

ipen = pen number. default=1

Appendix B Sec9.52 PLOT/qualifiers,label

Does an X-Y plot of data in the plot buffer (all lines). The plot label "label" is optional. The plot
label can be blanked with the TITLE command. If either x-axis or y-axis is log PLOT will take the
 logarithm of the appropriate coordinate as it is plotted. This will not affect the data buffer.

Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.53 PLOTV/qualifiers,VANG,INC,label

Does a stick plot for U,V pairs stored in X,Y, respectively. May be used with or without TAXIS
option ON.

VANG = rotation angle of vectors default=0.0
INC = plots every inc vector (subsamples)
label = plot label

Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.54 PLOTUV/qualifiers,VANG,INC,label

Similar to PLOTV except U and V are in alternate pairs, where X1= count, Y1= U component, X2=
 count, Y2= V component, etc. NLINES must be set to an even number and first series read will be U
second V etc.

Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.55 PLTNME,fname

Specifies the file name to be used for plots. File name is available in the global symbol
PPL$PLTNME. fname = the file name (default = ZETA.PLT)

Appendix B Sec9.56 PLTYPE,ICODE

Sets plotting medium. Null entry is not allowed. The binary file is converted into device specific code
using a post processor. The plot file name can be specified using the PLTNME command.

 ICODE = device code for plotting
 -2 = HP and TEK
 -1 = HP
 0 = Binary file
 1 = TEK
 2 = TEK and Binary file
 3 = GKS (valid on MicroVAX only)
 4 = GKS and Binary file (valid on MicroVAX only)

 default=1

Appendix B Sec9.57 RD/qualifier,NX,NY,TYPE,n,file_name

Read formatted or unformatted data from a sequential file according to FORMAT and VARS or

EVARS. The input file name is available in the global symbol PPL$INPUT_FILE.

NX and NY define the grid on which data will be plotted. If X,Y,Z triplets are being read the grid
can be coarser or finer than the input data. Thus, when reading triplets NX, NY of 50, 21 indicates
 the grid used for contouring will be 50 x 21 and not that the input data is on this grid. When the input
data are values of Z only the input grid and the plotting grid must be identical. Maximum number of
points for a single read is 100,000 pairs, 200,000 grid points or 50,000 triplets. Default number of
 points read is the remaining buffer space. File_name may be omitted if previously defined. Null
 entries are not allowed.

NX = no. of columns on the plotting grid for contouring or
 no. of points to read if not contouring. See NY for explanation.

NY = no. of rows if data is on a grid for contouring. Omitted otherwise.

The meaning of NX and NY change depending on whether you're reading data for contouring or not. If
you're reading contour data NX is the number of columns and NY is the number of rows.

If the data is not contour data NX is the number of points to be read and NY is not required. The default
for NX is the space remaining in the buffer. Reading will stop automatically at the EOF without any
error.

TYPE = method by which grid data is to be read (contour data only)
 0 by rows (1st subscript varies fastest)
 1 by columns (2nd subscript varies fastest)
N = number of data sets to be read (on same file).
file_name = file name. Default device is SY:.

If the file name is explicitly given the file will be read after rewinding the file. If the file name is not
given no rewind takes place.

If the data is EPIC, the file name given with the RD command is the name of the EPIC/pointer file for the
data file. Otherwise, the file name is the name of the data file itself

Valid qualifier (use only with VECTOR, VECSET, VECKEY commands):

/[NO]VECTOR /VECTOR reads the second component grid using the old xmin,xmax,ymin,ymax.
 This is done after the first vector component has been read in the usual fashion. See the VECTOR
command Default is /NOVECTOR.

If you are reading triplets PPLUS prompts for total number of points to be read in with 'rd>'. If you
are readingtriplets or grid data PPLUS will also prompt for xmin,xmax,ymin,ymax. (limits)

Appendix B Sec9.58 RESET

Uses the logical PPL$RESET as the input file to the GET command.

Appendix B Sec9.59 RETURN

Return from current command level to the previous command level. If executed at the top level
PPLUS will exit.

Appendix B Sec9.60 RLABS,n,ANG

Specifies the angle to rotate the moveable labels. (The labels defined by the LABS command.)

n = number of the label (no default)
ANG = angle in degrees. Default = 0.0

Appendix B Sec9.61 ROTATE,ON/OFF

Rotates the plot 90 degrees on the screen and plotter.

Default = OFF

Appendix B Sec9.62 RWD,file_name

Rewinds the current data file. File_name may be omitted if previously defined. Files are also
rewound by explicitly including the file name in the SKP and RD commands. Rewinds the EPIC
pointer file. The input file name is available in the global symbol PPL$INPUT_FILE.

If the data is EPIC, the file name given with the RWD command is the name of the EPIC/pointer file for
time series data. Otherwise, the file name is the name of the data file itself

Appendix B Sec9.63 SAVE,file_name

Saves the options currently in effect on file file_name in a binary format. File_name must be specified.

Appendix B Sec9.64 SET sym arg

Creates/modifies the symbol sym and sets it to arg. The argument arg can be either a legal character
string, a simple arithmetic expression, or a special function. A simple arithmetic expression is of
the form num1 op num2, where op is +, -, * or / (addition, subtraction, multiplication or
 division) and num1 and num2 are numbers. The numeric values must be separated from the operator op
by spaces. The string will be used exactly as it appears if enclosed by double quotes ("). For example:

SET XPOS 4.4 + 2 results in XPOS = 6.200E00
SET A_LABEL "4.4 + 2" results in A_LABEL = 4.4 + 2

The special functions manipulate and reformat character strings. They are:

 $EDIT(symbol,argument)
 $EXTRACT(start,length,symbol)
 $INTEGER(symbol)
 $LENGTH(symbol)
 $LOCATE(substring,symbol)
 $ELEMENT(position,delimiter,symbol)

The general format is SET sym $function(arg1, arg2,...). These functions are described in the
 SPECIAL FUNCTIONS section. (p. 475)

Appendix B Sec9.65 SHOW symbol

Prints the current value of "symbol".

Appendix B Sec9.66 SIZE,width,height

Sets total plotting size in inches of the plotting region. Null entries are not allowed. The width and
height should be about 2 and 1.5 inches greater than the respective axis lengths. The displacement
specified by ORIGIN must be considered when values for SIZE and AXLEN are being chosen. The
 maximum allowed size for Versatec plots (to keep the plot on a single page) is 8 by 10.5. The values
 of width and height are placed in the global symbols PPL$WIDTH and PPL$HEIGHT.

 width = plotting area total width (default = 7.5)

height = plotting area total height (default = 5.625)

Appendix B Sec9.67 SKP,n,file_name

Skip n sequential or unformatted records. File_name may be omitted if previously defined. If the file
name is explicitly given the records will be skipped after rewinding the file. If the file name is not
given no rewind takes place. The input file name is available in the global symbol
PPL$INPUT_FILE.

If the data is EPIC, the file name given with the SKP command is the name of the EPIC/pointer file for
time series data. Otherwise, the file name is the name of the data file itself.

Appendix B Sec9.68 SMOOTH,n

Does n laplacian smoothings on contour type data. Null entry is not allowed.

Appendix B Sec9.69 SPAWN

Creates a sub-process and passes control to this process. When finished with the spawned process
type LOGOUT to return to PPLUS.

Appendix B Sec9.70 TAXIS/qualifier,DT,arg

Sets the time axis characteristics. The axis length is specified with AXLEN for this style axis. When
TAXIS is turned on and BIBO or EPIC formatted data is read, the time series are automatically adjusted
properly relative to TMIN. NOTE: DT and TSTART (set with the TIME command) are needed only
when BIBO or EPIC data is not being used.

DT = sampling rate in minutes (default=1440 ,ie, daily)
arg = ON/OFF turns TAXIS option on and off (default=OFF)

/[NO]YAXIS if yaxis draw a vertical time axis in place of the yaxis. (NOYAXIS)

Appendix B Sec9.71 TEKNME[,fname]

Stores the Tektronix plot in file fname if specified. Terminal must have NOWRAP to dump the plot
back to the screen with the TYPE command. The current Tektronix plot file name is available in
global symbol PPL$TEKNME.

Appendix B Sec9.72 TICS,SMX,LGX,SMY,LGY,IX,IY

Sets the sizes in inches of the small and large tics on the X and Y axis. The tic style may also be set for
both axes.

SMX = small X axis tic size default=0.125
LGX = large X axis tic size default=0.25
SMY = small Y axis tic size default=0.125
LGY = large Y axis tic size default=0.25
IX = 1 X tics on the inside
 0 X tics on both sides
 -1 X tics on the outside (default)
IY = 1 Y tics on the inside
 0 Y tics on both sides
 -1 Y tics on the outside (default)

Appendix B Sec9.73 TIME,TMIN,TMAX,TSTART

Specifies time axis limits and starting time of time series data. See TAXIS command for restrictions.
 (Default is auto-scaling for BIBO and EPIC formatted data)

Note: If you read time as a sequence number andspecify DT (set with the TAXIS command) and
TSTART, then the TSTART time/date must correspond to a sequence number of 1.

TMIN and DT (see TAXIS command) must be specified before TSTART. TSTART must be re-
entered whenever DT is changed.

TMIN = Start date/time of time axis (WHOI format = Wyymmddhhmm)
TMAX = End date/time of time axis
TSTART = Start time of time series data (optional)

Appendix B Sec9.74 TITLE,HLAB,label

Sets the main plot title to "label" without generating a plot. If "label" is omitted the main plot title is
cleared. Optionally the size of the title can also be specified.

HLAB = the height of the title in inches. (default = .16 inches)

Appendix B Sec9.75 TKTYPE,TYPE

Sets the type of TEK terminal. Null entry is not allowed. Valid values are: 4010, 4014, 4107,
4115, 4051, 4052 and 4662.

TYPE = model no. of TEK terminal default=4010

Appendix B Sec9.76 TRANSXY,n,XFACT,XOFF,YFACT,YOFF

Lets you define a linear transformation for the X and Y variables in each line, i.e., XT(i)=
XFACT*X(i) + XOFF. TRANSXY does not affect the data. The translation is only applied as the data
is plotted.

n = line number (no default)
XFACT = multiplicative factor for X (default=1.0)
XOFF = offset for X (default=0.0)
YFACT = multiplicative factor for Y (default=1.0)
YOFF = offset for Y (default=0.0)

The transformation factors are available in the global symbols PPL$XFACT(n), PPL$XOFF(n),
 PPL$YFACT(n) and PPL$YOFF(n), where "n" is the line number. Initially only the first 10 lines
will have these symbols defined.

If the value being scaled is time and TAXIS is on, XOFF or YOFF is in units of DT. Unless DT is
changed with the TAXIS command, it will have the default value of 1 day.

Appendix B Sec9.77 TXLABP,n

Specifies time axis label position (-1 for below plot, 0 for no label, or +1 for above plot).

Appendix B Sec9.78 TXLINT,low_int,hi_int

Specifies which time axis tics will be labeled.

Low_int = labeling interval for lowest level of tics (e.g. mon on mon/yr axis)
Hi_int = labeling interval for highest level of tics (e.g. yr on mon/yr axis)

Appendix B Sec9.79 TXLSZE,ht

Specifies height of time axis labels (inches).

Appendix B Sec9.80 TXNMTC,n

Specifies number of small tics between large tics on time axis. If NMTCT is -1 the major divisions
are denoted by large tics and the minor divisions by small tics, otherwise they are denoted by
thick tics and large tics, respectively.

Appendix B Sec9.81 TXTYPE,type,style

Specifies type and style of time series axis.

type = DAYS
 style = HR (hour,day on 2 lines) (default)
 = HRDAY (on 1 line)
 = MON
 style = DAY (day,mon on 2 lines) (default)
 = DAYMON (day,mon on 1 line)
 = YR (default)
 style = MON1 (1-char month)
 = MON3 (3-char month) (default)
 = MONYR (month,yr on 1 line)

Appendix B Sec9.82 VARS,NGRP,A1,A2,A3,...,Ai

Defines the location of variables within a record of a sequential data file. If only a single variable
 is specified and it is either X or Y the other is automatically filled with the data point number. If only Z

(gridded data) is given the program expects data to be grid points in one of two formats, by rows or
 by columns. If X, Y, and Z (triplets) are given the program uses ZGRID to put the data on a evenly
spaced grid. See the chapters Getting Started and Data Formats for more information on VARS.

NGRP = no. of groups per record
Aj = 1,2, or 3 The position of Aj in VARS command indicates which variable
 is to be read as an x, y or z.
 1 = X variable
 2 = Y variable
 3 = Z variable
i = NVAR no. of variables per group. default=VARS,1,1,2
 (i.e. one group per record, first variable is X, second is Y). If left blank
 indicates a number not to be read, but a variable is present and expected by the FORMAT.

Appendix B Sec9.83 VECKEY/qualifier,x,y,ipos,format

VECKEY sets where the scaling key for the vectors is plotted. See VECTOR and VECSET
commands.

 x = x position of vector key
 y = y position of vector key (default is no key at all)
 ipos = relative position of key (not implemented)
 format = format to draw the numeric part of the key default = (1pg10.3)

 Valid qualifiers are:

 /[NO]USER determines units of x and y positions. Default is /USER. If /NOUSER units are inches
from the ORIGIN. (see the ORIGIN command)

Appendix B Sec9.84 VECSET,length,scale

VECSET sets the scaling for the vectors plotted. See the VECTOR and VECKEY commands.

 length = length of standard vector in inches. this is also the length of the scale vector. Default is 0.5.

 scale = length of standard vector in user units. This is also the length of the scale vector is user units.
 Default is the twice the mean length of the vectors.

Appendix B Sec9.85 VECTOR/qual,skipx,skipy,label

VECTOR draws a field of vectors from two component grids. See the VECKEY and VECSET
commands.

 skipx = plot every skipx column (default is 1)
 skipy = plot every skipy row (default is 1)
 label = title of plot

 Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Appendix B Sec9.86 VELVCT,rlenfact,inc

Does a vector plot of u,v pairs located at x,y locations. This plot is done on a two dimensional
field (compared to PLOTV and PLOTUV which are one dimensional). To use VELVCT the data
must be stored as two lines. Line 1 containing u,v data pairs, and line 2 containing the
corresponding x,y location pairs. The lines are loaded with data in the ordinary manner. Default length
scaling is set to the minimum inches/user_unit along the x and y axis.

 rlenfact = scaling factor for vector length (default = 1.0)
 > 0 scale = rlenfact * inches/user_unit on x-axis
 < 0 scale = rlenfact * inches/user_unit on y-axis
 inc = plots every inc vectors (subsamples)

Example:

xaxis,0,4,1
yaxis,1,8,1
nlines,2
enter
2.2,3.3
5.0,6.0
1.3,2.0
3.0,0.0
0.5,7.3
1.3,4.4
1.1,4.2

end
enter
1,2
3,3
2,2
3,5
2,6
2,7
3,2
end
velvct,-.3,2

reads 7 x,y and u,v pairs storing them as lines then plots every other vector scaled .3 * inches/user_unit
on y-axis.

Appendix B Sec9.87
VIEW/qualifiers,ZSCALE,IC,ZMIN,ZMAX,VCOMP,label

Does a 3 dimensional surface plot. Label is optional.

ZSCALE = scale of the z data default=(YMAX - YMIN)/
 (ZMAX - ZMIN)
IC = 0 set Xscal = Yscale, =1 no effect. default=0
ZMIN = set the base of the surface plot to ZMIN. default:
 use ZMIN from the data
ZMAX = set the top of the surface plot to ZMAX. default:
 use ZMAX from the data
VCOMP = Vector component to use for plotting (see the
 VECTOR command). Default is 1.

 Valid qualifiers are:

 /[NO]WAIT Controls whether PPLUS pauses after plot completion. Pause is signaled by a tone and
terminated by typing a character. If an <ESC> is typed PPLUS will return from the current command
level to the lowest command level. Default = WAIT.

 /[NO]OVERLAY Controls whether PPLUS overlays the plot on the preceeding plot. The default is
/NOOVERLAY which causes the plot to be a new plot. The axes and their labels are not redrawn.
 Moveable labels (LABS command) will redraw.

Best results are normally obtained by using defaults. Using scales does not change the data buffer.

VPOINT,X,Y,Z

Sets the viewpoint coordinates for surface plotting. To create a surface plot use the VIEW

 command. The viewpoint coordinates are available in the global symbols PPL$VIEW_X,
 PPL$VIEW_Y and PPL$VIEW_Z. X, Y and Z form a right handed coordinate system with the Z axis
up and Y axis into the page.

X = x coordinate of viewpoint
Y = y coordinate of viewpoint
Z = z coordinate of viewpoint

Appendix B Sec9.88 WHILE expression THEN

The first element of a WHILE statement the other element is ENDW. ENDW is not valid in any
other context.

 expression = argument operator argument
 argument = symbol name, number or a string enclosed by quotes
 operator = .EQ., .NE., .LT., .GT., .LE. or .GE.

The symbol name can be undefined and its value is then "" (i.e., null string).

Appendix B Sec9.89 WINDOW,ON/OFF

Windows the data to within the axes. default=OFF

Appendix B Sec9.90 XAXIS,XLO,XHI,XTIC

Sets the x-axis characteristics. If TYPEX is not 1, then XLO and XHI must be the log of the minimum
and maximum (must be integral values). XAXIS without arguments resets the auto scaling. Auto
 scaling does consider LIMITS and does not consider WINDOW,ON.

XLO = axis minimum (beginning of axis)
XHI = axis maximum (end of axis)
XTIC = dx distance between large tics

Appendix B Sec9.91 XFOR,frmt

Sets the format for the x axis label.

frmt = 0 or (a format) default=0 (auto label)

To create an integer numeric label the format must begin as "(I" or "(i". A latitude or longitude axis
can be created by specifying ''LAT''), ''LON''), ''LONE'') or ''LONW'') in the format, where the
punctuation surrounding LAT, LATW, etc is two single quotatino marks. The single quotes are required
because PPLUS symbol substitution will occur with 1 single quote. The hemisphere designation
 will be inserted. Longitude must be continuous across the dateline with west positive for ''LON'' or
''LONW'', i.e., 135 is 135W and 190 is 170E. For ''LONE'' longitude is continuous across the dateline
 with east positive, i.e., 135 is 135E and 190 is 170W.

Example:

yes? use coads_climatology
yes? SHADE/L=1/SET sst
yes? PPL XFOR (i5, ''LONW')
yes? PPL shade

Appendix B Sec9.92 XLAB,label

Enters the x-axis label. Label is ignored if TAXIS is on.

Appendix B Sec9.93 YAXIS,YLO,YHI,YTIC

See XAXIS.

Appendix B Sec9.94 YFOR,frmt

See XFOR.

Appendix B Sec9.95 YLAB,label

Enters the y-axis label.

Appendix B Sec10 FONT TABLES

Following are the Character and Symbol fontsavailable with PPLUS. Choose the font by its 2-letter
code, e.g. PLOT/TITLE=@CITemperature for the title "Temperature" in complex itallic. See
"Embedded String Commands" (480) in this appendix for use of the PPLUS fonts.

Tables showing the character fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html

Tables showing the symbol fonts are linked to the web page:

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html

The symbols used for PLOT/SYMBOL= are shown below. For example, PLOT/symbol=22 yields a *,
and PLOT/SYMBOL=35 yields a z.

http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_char_fonts.html#_TN_Ref_viewaxes_b
http://ferret.pmel.noaa.gov/Ferret/Documentation/Users_Guide/pplus_symbol_fonts.html #_TN_Ref_viewaxes_b
file:///Z|/ansley/FERRET/HOMEPAGE/Documentation/Users_Guide/doc_for_pdf/images/show_88_syms.gif

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

Appendix C: PLOTPLUS PLUS: Ferret Enhancements
to PLOTPLUS

 A User's Guide to the TMAP Modifications of the Plotplus Graphics Package

Jerry Davison

NOAA/PMEL/TMAP

April 1994

Note: this document also exists at
http://ferret.pmel.noaa.gov/Ferret/Documentation/PPLUS_Users_Guide/pplus_enhance_user_guide.html

It is included here with changes only to the formatting. Appendices 1 and 2 of the original document are
renumbered here as sections 3 and 4. Note that section 4, which describes generating postscript plots
with gksm2ps is duplicated in the main Ferret Users Guide in the section "Metafile Translation" (p.240)
.

Appendix C Sec1 PLOTPLUS HISTORY, EVOLUTION

Plotplus is a scientific graphics package with a long history. I have traced it only a small distance, and
what I know is sketchy. My present understanding is that a number of users at the Oregon State
University department of Oceanography contributed over a number of year to a graphics package with
both original and pre-existing algorithms and code; PLOT1, PLOT2, PLOT3 and PLOT4 successively
became the current standard. Don Denbo took a strong interest in improving the package; from his work
evolved PLOT5. He came to PMEL, improved PLOT5 further, and Plotplus was born. While here he
made modifications for the TMAP group to that code to support the Graphics Kernel System, GKS, an
international standard for programming computer graphics applications. This user's guide describes
 modifications I made to Plotplus to extend the use of GKS within it; this version will no doubt evolve as
well.

The guide addresses itself only to the TMAP modifications to Plotplus. The Plotplus manual describes all
other aspects of the current version as supported by its author and should be consulted for information
about using Plotplus.

The TMAP GKS enhancements of Plotplus include modification and addition of several PPL
commands, including:

ALINE,
CLSPLT,
COLOR,

http://ferret.pmel.noaa.gov/Ferret/Documentation/PPLUS_Users_Guide/pplus_enhance_user_guide.html

CONSET,
FILL,
LINE,
LIST,
PEN,
PLTNME,
PLTYPE,
SHADE,
SHAKEY,
SHASET.

This version of PPL+ is modified to be used with the public domain GKS library XGKS. X Windows is
the only supported device type. There is in addition a utility, gksm2ps, to generate monochrome and
color hard copy of PPL+ plots. `gksm2ps' was written by Larry Oolman at the University of Wyoming;
I modified it for use with PPL+. Please see the Ferret Users Guide for information on using gksm2ps.

Appendix C Sec2 ENHANCED COMMANDS DESCRIPTION

Appendix C Sec2.1 ALINE/qualifier line#, minx, miny, maxx, maxy, set

Draws the line associated with the specified line number between 2 points (see PEN for more on this).
 Two modes are available. In immediate mode the line is drawn when the command is given. Deferred
mode permits setting of several lines (with individual endpoints) to be drawn whenever the PLOT
command is given. Deferred mode is included so that examples of each linetype used in a plot can be
provided as part of a key. The ALINE command does not modify data in the plot buffer; lines drawn can
be considered as labels. The ALINE command given with no arguments resets all set lines to OFF.

 line# The line to be drawn will be of the type, thickness, and color associated with this line number.

 minx X-component of the first endpoint.

 miny Y-component of the first endpoint.

 maxx X-component of the second endpoint.

 maxy Y-component of the second endpoint.

 set is optional. If omitted, execution mode is immediate. If ON, sets deferred mode for the specified
line number. If OFF, drawing the line is canceled; specification of the endpoints may be omitted when
canceling ALINE for a line. Execute LIST ALINE to find which lines are set, and their coordinates.

 Valid qualifier:

 /[NO]USER determines whether user coordinates or inches will be used in locating the line. Default is
/user.

Appendix C Sec2.2 CLSPLT

Modified to be compatible with GKS metafile use. Closes the currently open plot file.

Appendix C Sec2.3 COLOR n, red, green, blue

Sets the color of a single color using the RGB color model. Specify with no arguments to reset colors 1
through 6 to their default values. These six colors are used as the line colors in line and contour plots.
 See "GKS line bundles" for more on line color and bundles.

 n color index

 red The intensity of red, with a value from 0 to 100%

 green The intensity of green

 blue The intensity of blue

In the present version of PPL+, colors of indices 0 and 1, corresponding to the plot window background
and foreground, are restricted to black (intensities all 0) or white (intensities all 100).

Appendix C Sec2.4 CONSET hgt, nsig, narc, dashln, spacln, cay, nrng,
dslab, spline_tension, draftsman

Two new parameters have been added, spline_tension and draftsman. Spline_tension controls a spline
fitting routine for contour lines and is used primarily in conjunction with the narc parameter to alter the
way contour lines are drawn. The new parameter draftsman enables the user to specify either horizontally
oriented contour labels (draftsman style) or the default, contour labels running along contour lines.

 hgt height of contour labels (default=.08 inches)

 nsig no. of significant digits in contour label (default=2)

 narc number of line segments to use to connect contour points (default=1)

 dashln dash length of dashes mode (default=.04 inches)

 spacln space length of dashes mode (default=.04 inches)

 cay is the interpolation scheme. If CAY=0.0, Laplacian interpolation is used.

The resulting surface tends to have rather sharp peaks and dips at the data points (like a tent with poles
pushed up into it). There is no chance of spurious peaks appearing. As CAY is increased, Spline
interpolation predominates over the Laplacian, and the surface passes through the data points more
smoothly. The possibility of spurious peaks increases with CAY. CAY = infinity is pure Spline
interpolation. An over relaxation process in used to perform the interpolation. A value of CAY=5.0 (the
default) often gives a good surface.

 nrng Any grid points farther than NRNG away from the nearest data point will be set to "undefined"
[1.0E35] (default=5)

 dslab nominal distance between labels on a contour line (default = 5.0 inches)

 spline_tension a real value that affects the fit of the contour line. sometimes it's called the tension
factor. This value indicates the curviness desired. If abs(spline_tension) is nearly zero (e.g. .01) the
resulting curve is approximately a cubic spline. If abs(spline_tension) is large (e. g. 10) the resulting
curve is nearly a polygonal line. If spline_tension equals zero, the resulting curve will be calculated by
the original algorithm in PPL. This will result in a cubic polynomial fit. This parameter is only applied
if narc is greater than 1. Otherwise, straight lines are drawn between data points and no interpolated
points are contoured. A typical value for spline_tension is 1, and the typical useful range of values is .01
to 10. The spline interpolation used in this calculation will result in erroneous plots for certain large
values of spline_tension (about 20 or greater). It is up to the user to choose an appropriate value of
spline_tension to avoid this error. No error checking is conducted in the interpolation routine for this
condition because the error depends highly on the data being interpolated. The default for spline_tension
is zero, so the standard contour line fit is used unless something else is input. NOTE: While it may seem
that this feature somewhat overlaps the feature documented in the parameter cay above, this is not true.
The parameter cay and the associated feature is only implemented if both the grid and data are read in
directly using the RD command. In that case, CONSET must be input before RD. On the other hand,
when using the spline_tension feature described here, this is not needed as interpolation is carried out at
the time the contour lines are drawn.

 draftsman a real value that controls the label format. If draftsman is set to zero, the original label style
is used. This style writes the labels along contour lines at varied angles. If draftsman is set to anything
other than zero, all the labels will be oriented horizontally on the page (a.k.a. draftsman style). At this
time the magnitude of the non-zero value has no bearing on the plot. The default is zero.

Appendix C Sec2.5 FILL/qualifier

 FILL is a modification of the PPL AREA command. FILL generates a "smooth-bordered" area-filled
contour plot of a 2-d field. As with the SHADE command, the SHAKEY and SHASET commands can
be used to control the appearance of the plot. The /[NO]WAIT and /[NO]OVERLAY qualifiers are
valid, used in the same way as with PLOT, CONTOUR and SHADE.

Appendix C Sec2.6 LINE n, mark, use

The original PPL command has been modified. PPL+ uses GKS line bundles to specify line type,
thickness, and color. A number of line bundles are defined for each device type and their characteristics
depend on the capabilities of the device. See "GKS line bundles" for this information. The LINE
command use argument no longer specifies the line type -- whether the line is to be dashed or solid.
 Specification of the use of marks remains the same.

 n line number

 mark data mark

 use line/mark use specification
0 - line connecting points and no mark at points
1 - mark data points
2 - mark end points only
3 - only marks (no line)

Appendix C Sec2.7 LIST arg

New arguments are available to the LIST command to request information about the settings of the
added features.

 arg New arguments are ALINE, SHAKEY, and SHASET.

Appendix C Sec2.8 PEN n, ndx

This command has been modified with the use of GKS line bundles in PPL+. It now specifies the line
bundle index associated with each line. See section "GKS line bundles" (p. 531) for the type, thickness,
and color representation for each line bundle.

 n The line number. If n is 0, sets the pen used to plot the axes and labels.

 ndx sets the line bundle index to be used for line n. Default is 1.

Appendix C Sec2.9 PLTNME metafile_name

Modified to be compatible with GKS metafile use. Specifies the name to be used when a metafile is
being made with each plot. The default is `metafile.plt'.

Appendix C Sec2.10 PLTYPE icode META

PLTYPE 3, GKS output, currently supports only X Windows output. Hardcopy can be generated using
the gksm2ps command.

 icode must be 3 to use the new features.

A GKS metafile with the default name `metafile.plt' (with sequential version numbers for subsequent
plots) is produced with each plot when META is specified.

After the metafile is set, if you wish to deactivate the metafile output, reenter the PLTYPE command
without entering META, e.g., PLTYPE 3. To reactivate, reenter PLTYPE including the META
specification, .e.g., PLTYPE 3 META. The gksm2ps command translates the metafiles and generates
PostScript output from them. See the Ferret Users Guidefor information on gkem2ps.

Appendix C Sec2.11 SHADE/qualifier

Generates a fill area plot of a 2-d field. A rectangular grid is defined when visualizing 2-d fields in PPL;
a grid cell is associated with each point. The SHADE command fills in each grid cell with a color
determined by the field value at the grid points.

 The LEV and LIMITS commands can be used, in a way identical to their use with CONTOUR, to
determine the levels shaded, and specify intervals. The SHAKEY and SHASET commands also control
the appearance of the plot; default colors (or patterns) and key attributes will be used if not specified.
 The /[NO]WAIT and /[NO]OVERLAY qualifiers are valid, used in the same way as with PLOT and
CONTOUR.

Appendix C Sec2.12 SHAKEY do_key, orient, klab_siz, klab_inc, klab_dig,
klab_len, kx_lo, kx_hi, ky_lo, ky_hi

 This command controls the attributes of the key generated by the SHADE command. The key
associates the colors or patterns used in the plot with the field values; its use is optional. LIST SHAKEY
will list current settings of the key.

 do_key If 0 the key will not be displayed; if 1 the key will be displayed. Default is 1.

 orient If 0 the key is horizontal (by default on top of the figure); if 1 the key is vertical (by default on
the right). Default value is 0.

 klab_siz If non-zero, klab_siz is the height of key label characters in inches. If 0, SHADE selects a
reasonable height; default is 0. By default the labels are on the right side of a vertical colorbar key and
above a horizontal key. To put the labels on the opposite side of the colorbar, send a negative value for
klab_size , e.g. -0.1 for labels of size 0.1 on the left of the colorbar.

klab_inc If non-zero every klab_inc key level is labeled; if 0, SHADE selects a suitable value. Default
value is 0.

 klab_dig is the number of significant digits (klab_dig > 0) or decimal places (klab_dig < 0) in the key.
 Default is 3.

klab_len is the maximum number of characters in a key label. Default is 9.

kx_lo X-coordinate of the left side of the key, in inches. (Prior to V5.53 of Ferret, to change any of
kx_lo, kx_hi, ky_lo, ky_hi, you needed to set all four of them.)

kx_hi X-coordinate of the right side.

ky_lo Y-coordinate of the bottom of the key, in inches.

ky_hi Y-coordinate of the top.

Example:

SHAKEY 1, 1, 0, 3, 4, 8, 9.4, 10.2, 1.4, 7.4

Specifies that the SHADE command draw a vertical key with label size selected automatically and every
third color of the key labeled. Labels will contain 4 significant digits to a maximum of 8 digits. The
entire key will occupy a rectangle from (x,y) = (9.4,1.4) to (10.2,7.4) in inches.

Appendix C Sec2.13 SHASET

SHASET set_pt, red, green, blue

SHASET SAVE=spknme

SHASET SPECTRUM=spknme

SHASET DEFAULT

SHASET PROTECT

SHASET RESET

This command sets the colors used in the plot generated by the SHADE and FILL commands, and takes
several forms. By default the shaded plots use a spectrum of color from blue to red. A user-defined
selection of colors can be chosen, saved for future use, and recalled by name.

SHASET uses the following approach in defining a spectrum. The levels set by the LEV command have
lower and upper bounds; SHASET defines a scale from 0 to 100 which spans the interval defined by
these bounds. With SHASET you may specify a color at any point along the scale by setting a control
point on the scale, along with the red, green, and blue fractions (between 0 and 100% of maximum
intensity) defining the color at that point.

A spectrum is built up by setting colors at a number of points. The SHADE and FILL routines linearly
interpolate each red, green, and blue fraction between set points to achieve a smooth transition from
point to point.

When you are interested in creating a custom spectrum to use in SHADE and FILL plots, first execute
SHASET with no arguments. This clears all set points except the bottom and top of the scale; the
bottom, at zero, is set to black (red, green, and blue fractions all 0% of maximum intensity). The top, at
100, is set to white (with red, green, and blue all 100%). SHASET can then be used to set any point in
the scale to any color.

set_pt defines a point in a scale, from 0 to 100, that spans the levels as set in the LEV command. Set_pt
can be negative; when set negative, SHASET deletes this set point from the current spectrum, if present.
 RGB values need not be specified in this case.

red The intensity of red in the color at the set point, with a value between 0 and 100%.

green The intensity of green.

blue The intensity of blue.

You may save a spectrum for later use using the SAVE form of the command, where you give the
present spectrum a name. A spectrum can be recalled using the SPECTRUM form of the command.
 One spectrum, `rainbow', the PPL+ default spectrum, is always available for recall.

spknme A name to be associated with a particular spectrum. The spectrum is stored in the current

directory as spknme.spk, is an ASCII file, and can be edited. One spectrum may be saved in memory by
omitting the spknme qualifier (specify SHASET SAVE) ; that spectrum is recalled from memory with
SHASET SPECTRUM.

The DEFAULT form will set the spectrum to the default colors associated with the workstation in use.
 This is not the PPL+ default but is defined for the device by GKS.

If you plan to overlay more than one SHADE or FILL in a single plot , specify SHASET PROTECT
after each use of either to protect the colors already used in the plot. SHASET RESET resets the
internally kept pointer protecting previously used colors, permitting their reassignment. Use the RESET
option when you are ready to begin a fresh non-overlay plot.

Appendix C Sec3 GKS LINE BUNDLES

GKS employees the concept of line bundles, where lines may be referred to by an index; the index
determines the three characteristics of plotted lines, namely, line type, thickness, and color. Line type
means whether the line is solid, dotted, dashed, dashed-dotted, etc. Thickness is measured in units
beginning with one; two is twice as thick as one, followed by three, three times as thick. Colors are
selected using a color index; the color associated with an index can be set using the PPL+ COLOR
command.

The values of these characteristics together determine the line representation. One result of bundle use is
that the same line bundle index may be defined to have different representations on different devices.

On X Windows devices color is usually used to distinguish lines; in that case the line type is always
solid. When Postscript hard copy is made from PPL+ metafiles, lines may be rendered as color, but on
monochrome printers the only available color is black. Consequently, when output is to a monochrome
printer, gksm2ps uses differing line types to distinguish lines instead of color. Lines of differing
thickness are available in both PPL+ X Window output and hard copy.

The table below presents the line thickness, color index and associated default color for color devices
(assuming a white background), and line type for monochrome devices, for the 19 line bundles in PPL+.
 On color devices, the default color of line index 1 is black if the background is white, and white if the
background is black; line bundle index 19 is the background color (the color index is 0).

Bundle
index

Thickness Color Line type (Monochrome devices)

 1 1 1, black solid

 2 1 2, red dashed

 3 1 3, green dotted

4 1 4 , blue dashed-dotted

5 1 5, cyan long dashed

6 1 6, magenta dashed and double-dotted

7 2 1, black solid

8 2 2, red dashed

9 2 3, green dotted

10 2 4, blue dashed-dotted

11 2 5, cyan long dashed

12 2 6, magenta dashed and double-dotted

13 3 1, black solid

14 3 2, red dashed

15 3 3, green dotted

16 3 4, blue dash-dotted

17 3 5, cyan long dashed

18 3 6, magenta dashed and double-dotted

19 1 0, white

Appendix C Sec4 HARD COPY

PostScript formatted files suitable for printing can be generated from PPL+ metafiles using the gksm2ps

command. Several command line arguments permit the tailoring of the output. The command and its
arguments are:

 gksm2ps:Send PostScript translation of GKS metafiles to a file

 usage: gksm2ps [-h] [-p landscape||portrait] [-l ps||cps] [-d cps||phaser] \
 [-X || -o <ps_output_file>] [-R] [-a] [-g WxH+X+Y] [-v] file(s)

 -h print this help message
 -p page orientation, landscape or portrait (default fits to page)
 -l line styles, ps == monochrome (default), cps == color
 -d device type, cps == Postscript (default), phaser == TEK phaser PS
 -X Send output to your Xwindow for preview instead of a file
 -o output file name (default name is 'gksm2ps_output.ps')
 -R do not rename files with a date stamp appended (default is to stamp)
 -a make hard copy the size of the original plot (default fits to page)
 -g WxH+X+Y WIDTH, HEIGHT, XOFFSET, & YOFFSET in points
 -v list version number of gksm2ps and do nothing else
 file(s) The specific metafile(s) to be translated.

 More about the arguments and their effects:

 -h Simply print the above help message.

 -p Specifies the orientation of the plot on the page to be landscape (with the long side of the page
horizontal), or portrait (the short side horizontal). The default fits the plot on the page in the orientaion
that best fits.

 -l Specifies line styles that will be used in the PS output. Monochrome is the default but color may be
more appropriate on color devices.

 -d Specifies the device type. Phaser printers using transfer sheets are PostScript, but the available
plotting area is reduced. The phaser option reduces the size of the plot slightly.

 -X This option lets you preview plots on your workstation screen.

 -o Specifies the output file name. All metafiles translated in a single execution of the gksm2ps
command are writen to a single file.

 -R The default renaming of the metafiles to be translated is intended to help distinguish metafiles that
have been printed from those newly made. This option turns off that renaming.

 -a The original size of the PPL plots is captured in the metafile; use this option to create the hard copy
that size. The default fits the plot to the available page size.

 -g Specify the hard copy plot size and offset in points (72 points = 1 inch).

 -v Just lists the version number.

file(s) Name the metafiles to be translated; separate the file names with a space. Wild card specification
can be used.

For help with Ferret see our Support Policy

Last modified: December 16, 2004

file:///Z|/ansley/FERRET/HOMEPAGE/ferret_support.html

	Local Disk
	List of Chapters
	Title
	Contents
	Index
	1 Introduction
	2 Data Set Basics
	3 Variables and Expressions
	4 Grids and Variables
	5 Animations and gif Images
	6 Customizing Plots
	7 String Data
	8 Special Data Sets
	9 Compute Environment
	10 NetCDF Files
	11 External Functions
	Commands Reference
	Glossary
	A External Functions
	B PPLUS Guide
	C PPLUS Extensions

